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Parametric bootstrap and approximate tests

for two Poisson variates

SUNG NOK CHIU∗

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong

Abstract

The parametric bootstrap tests and the asymptotic or approximate tests for detect-

ing difference of two Poisson means are compared. The test statistics used are the Wald

statistics with and without log-transformation, the Cox F statistic and the likelihood

ratio statistic. It is found that the type I error rate of an asymptotic/approximate test

may deviate too much from the nominal significance level α under some situations. It

is recommended that we should use the parametric bootstrap tests, under which the

four test statistics are similarly powerful and their type I error rates are all close to α.

We apply the tests to breast cancer data and injurious motor vehicle crashes data.

Keywords: Asymptotic tests; Monte–Carlo tests; Parametric bootstrap; Poisson pro-

cess; Rate ratio.

Running title: Tests for two Poisson variates
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1 Introduction

Count data on the numbers of occurrences often arise in retrospective public health stud-

ies in such a way that the cumulative total number is observed at one time point but no

information is available on the exact time points of the individual occurrences. In spatial

epidemiology [10], we may have count data on the numbers of cases in a politically defined

administrative region but the exact locations of the individual cases have not been recorded.

With complete information on the exact time points or exact spatial locations, the data could

be modelled by a counting process [1] or a spatial point process [5], respectively. Without

the detailed temporal or spatial information, such count data are typically modelled by the

Poisson distribution. One question we often encounter in the latter scenario is that given

two independent counts observed from two time intervals or spatial regions with fixed but

not necessarily equal length or size, whether the rate or the intensity, i.e. the number of

occurrences per unit time or area, of the two underlying temporal or spatial processes are

the same or not.

For example, in a study of the risk of motor vehicle crashes in elderly drivers, Ray et

al. [16] found that in a sample of 16,262 drivers aged 65–84 years, there were 175 injurious

crashes in 17.3 thousand person-years at risk among women whilst there were 320 in 21.4

thousand person-years at risk among men. Another example can be found in the study by

Boice and Monson [2], who compared the breast cancer rate in women with tuberculosis after

repeated fluoroscopic examinations of the chest with a control group; they observed 41 cases

of breast cancer in 28,010 person-years at risk among women repeatedly exposed to multiple
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X-ray fluoroscopies and 15 cases in 19,017 person-years at risk among unexposed women. In

each of the above examples we have two count data (175 and 320; 41 and 15) coming from

two time intervals of unequal length (17.3 and 21.4; 28,010 and 19,017, respectively).

To compare two independent Poisson rates for the breast cancer data in Boice and Mon-

son [2], Greenland and Rothman [7] used the large-sample Wald confidence limits for the

logarithm of the rate ratio, whilst Graham et al. [6] proposed the use of the likelihood scores

to construct large-sample confidence limits for the rate ratio. Note that by saying asymptotic

or large-sample we consider the limiting scenario that the means of the Poisson distributions

go to infinity, because in our context a large sample (of the point process) comes from a

long observation period, leading to a large Poisson mean; if we consider fixed length obser-

vation periods, the limiting scenario is then equivalent to the one in which the rates go to

infinity. Liu et al. [11] compared the coverage of confidence intervals constructed by four

different methods. Ng and Tang [14] and Ng et al. [13] carried out extensive simulation

studies to compare the type I error rates and the powers of Wald, likelihood ratio and score

statistics using the asymptotic normality and the numerical approximation for the p-value.

However, these comparisons have overlooked a popular approximate test developed by Cox

[3], which has been cited, up to the end of August 2008, over one hundred and forty times,

mostly in medical research articles. These papers also have not mentioned the possibility of

using parametric bootstrap. Krishnamoorthy and Thomson [9] remarked that their ad hoc

approach to estimate the p-value for the test statistic T1 (to be introduced in Section 2) is

equivalent to the parametric bootstrap approach in an exact manner and they found that
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their approach is better than the conditional test introduced by Przyborowski and Wilenski

[15].

This paper reports a power comparison for the statistics recommended in Cox [3], Ng

et al. [13] and Ng and Tang [14], using the asymptotic/approximate distributions as well

as the parametric bootstrap tests [4]. Section 2 introduces the test statistics for detecting

difference between the rates of two Poisson variates. Section 3 explains how the parametric

bootstrap tests would be carried out in our context and then Monte–Carlo simulation results

are reported and discussed in Section 4. Finally, in Section 5 we apply the tests to the above

two examples.

2 Test statistics and their asymptotic distributions

Suppose X1 and X2 are two independent random variables coming from two Poisson distri-

butions with means λ1t1 and λ2t2, respectively. That is to say, Xi is the observed number of

occurrences of a temporal or spatial Poisson process with rate or intensity λi in a sampling

frame of length or size ti, i = 1 and 2. Denote by ρ the rate ratio λ2/λ1, and let t2/t1 = d.

Let us consider a one-sided test here, and so the hypotheses of interest are

H0: ρ = 1 against HA: ρ > 1.

Cox [3] argued that approximately

F =
t1(X2 + 1

2
)λ1

t2(X1 + 1
2
)λ2
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has an F -distribution with (2X1 + 1, 2X2 + 1) degrees of freedom, which, he said, “may lead

to accurate results even in very small samples”.

Ng and Tang [14] considered four Wald statistics, two of which are obtained after taking

logarithmic transformation for skewness correction and variance stabilization. They are:

W1 =
X2 − dX1

(d2X1 + X2)1/2
,

W2 =
X2 − dX1

{d(X1 + X2)}1/2
,

W3 =
ln(X2/X1) − ln(d)

(1/X1 + 1/X2)1/2
,

W4 =
ln(X2/X1) − ln(d)

{(2 + 1/d + d)/(X1 + X2)}1/2
,

where for W1 and W2, we use the convention that 0/0 = 0, whilst for W3 and W4, we set

Xi = 0.5 whenever Xi = 0, i = 1, 2. Under the null hypothesis, Wj follows the standard

normal distribution asymptotically, j = 1, 2, 3, 4. The simulation results in Ng and Tang

[14] suggest that we should use either W2 and W3, and so in this paper we do not consider

W1 and W4.

Ng et al. [13] considered the difference, instead of the ratio, of the two rates:

H0: λ2 − λ1 = δ against HA: λ2 − λ1 > δ

and their test statistics include

T1 =
X2/t2 − X1/t1 − δ

(X1/t21 + X2/t22)
1/2

,

T2 =
X2/t2 − X1/t1 − δ

{(X1 + X2)/(t1t2) + δ(t2 − t1)/(t1t2)}1/2
,
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which are equivalent to W1 and W2, respectively, if δ = 0. Note also that the statistic T1 with

its asymptotic normality is the one recommended by Liu et al. [11] to construct confidence

intervals. Ng et al. [13]’s another statistic T3

T3 =
X2/t2 − X1/t1 − δ

{λ∗
1/t1 + λ∗

2/t2}1/2
,

where λ∗
i are the constrained maximum likelihood estimates of λi under the null hypothesis

that λ2 − λ1 = δ:

λ∗
i =

(−1)iδ

2
+

X1 + X2

2(t1 + t2)
+

√(
δ

2
− X1 + X2

2(t1 + t2)

)2

+
X1δ

t1 + t2
,

is also equivalent to W2 when δ = 0. Because the null hypothesis of interest here is that

ρ = 1 or δ = 0, we do not have to consider Tj, j = 1, 2, 3, for non-zero δ in this paper.

They also had the one-sided likelihood ratio statistic:

L =

⎧⎪⎪⎨
⎪⎪⎩

2 ln
(X1/t1)

X1(X2/t2)
X2

{(X1 + X2)/(t1 + t2)}X1+X2
, X2/t2 − X1/t1 > δ,

0, X2/t2 − X1/t1 ≤ δ,

with the convention that 00 = 1. Under the null hypothesis, asymptotically L is zero with

probability 0.5 and follows a χ2-distribution with one degree of freedom with probability 0.5.

Generically, denote by τ any one of the statistics above. For the one-sided alternative

HA: ρ > 1 or HA: λ2 − λ1 > 0

the critical regions of these test statistics are all in the form {τ ≥ τ0} for some τ0.
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3 Parametric bootstrap tests

The normal, χ2- and F -distributions of Wj’s (and Tj’s), L and F , respectively, are large-

sample approximation only. Ng et al. [13] expressed the p-value of each Tj as a double infinite

sum (see also Krishnamoorthy and Thomson [9]) but their approach cannot be applied to L

and F . In this paper, we estimate the p-values via parametric bootstrapping [4, pp. 140–148].

More precisely, under the null hypothesis that ρ = 0 or δ = 0, the maximum likelihood

estimator of λ1 = λ2 = λ is

λ̂ =
X1 + X2

t1 + t2
.

We then generate R pairs of independent Poisson variates with means λ̂t1 and λ̂t2, re-

spectively. Thus, in total we have R + 1 pairs of data, namely, the observed counts (X1, X2)

and the counts (X∗
1i, X

∗
2i), i = 1, . . ., R, simulated under the null hypothesis with the esti-

mated common rate λ̂. Denote by τ the value of any one of the statistics F , W2, W3 or L

calculated from the observation (X1, X2) and by τ ∗
i the value of the same statistic obtained

from (X∗
1i, X

∗
2i), i = 1, . . ., R. The sequence {τ ∗

1 , . . . , τ ∗
R} forms a random sample of the para-

metric bootstrap distribution of the chosen test statistic under the null hypothesis. Thus, if

exactly k simulated τ ∗
i are greater than τ and none is equal to it, the one-sided p-value can

be estimated by the sample proportion

pboot =
k + 1

R + 1
,

because under the null hypothesis, τ is another independent realization of the distribution of

the chosen statistic and the random sample {τ, τ ∗
1 , . . . , τ ∗

R} of size R + 1 has k + 1 members

greater than or equal to the value τ .
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The counts (X∗
1i, X

∗
2i) are, however, generated under a Poisson distribution, which is

discrete; one or more τ ∗
i may be equal to the value τ . If exactly m of {τ ∗

1 , . . . , τ ∗
R} are equal

to τ , then

k + 1

R + 1
≤ pboot ≤ k + m + 1

R + 1
.

To be conservative, we take the upper bound

pboot =
k + m + 1

R + 1
=

#{τ ∗
i ≥ τ} + 1

R + 1
.

The null hypothesis will be rejected if pboot is less than or equal to the significance level α.

Such a parametric bootstrap test is a straightforward generalization of a Monte–Carlo

test, which is the same procedure as above except that for a Monte–Carlo test we do not

have any nuisance parameters, such as λ, to estimate. Hope [8] showed that the power

loss, compared with the corresponding uniformly most powerful test, resulting from using

Monte–Carlo tests is slight and so R is not necessary to be large. Marriott [12] suggested

that for α = 0.05, R = 99 is adequate, whilst Davison and Hinkley [4], p. 156, suggested, for

α ≥ 0.05, that the loss of power with R = 99 is not serious and R = 999 should generally be

safe. Note that in either a Monte–Carlo test or a parametric bootstrap test, it is the rank

of τ , and not the value of τ itself, which determines that p-value.

4 Simulation results

In this section, α = 0.05 and R = 999 will be used. Without loss of generality, we set t1 = 1

and so t2 = d. Tables 1 and 2 show the rejection rates estimated by 10,000 simulations for
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λ1 = 1 and 20, representing small and large λ1 scenarios. Nevertheless, conclusions below

were drawn from an extensive series of simulation in which different values between 1 and

20 were used for λ1. By definition, λ2 = ρλ1 and so if ρ = 1, the rejection rate is the type I

error rate, otherwise the rejection rate is the power.

Because t1 is fixed and t2 = d, the larger the value of d, the longer the observation interval

for the point process corresponding to the count X2. However, the power of any one of the

considered tests is not an increasing function of d, especially when ρ is not much larger than

unity. The reason is that the variance of X2 also increases as d increases. On the other hand,

if, for example, we double the value of λ1, we can rescale the time axis so that the rate of

the process corresponding to X1 remains the same and the length of the observation period

is doubled. That is, increasing λ1 with a fixed t1 is effectively the same as increasing the

observation period whilst the rate is kept fixed. By the same argument above, the power

does not necessarily increase when λ1 increases, because the variances of X1 and X2 also

increase. Nevertheless, when we vary the values of λ1 and d, the performance of some tests

may become more desirable whilst some others less desirable; this will be discussed in details

in the following.

First, note that for small λ1 or small d, some columns may be identical or almost iden-

tical for different statistics because the Poisson variates with small means, and hence small

variances, do not vary too much.

We can draw from our simulation the same conclusion as in Ng and Tang [14] that

the type I error rate of the asymptotic W3 is usually smaller than or equal to that of the

9



asymptotic W2. However, for large λ1 and small d, the type I error rates of the approximate

Cox F statistic and the asymptotic likelihood ratio statistic L could be smaller than that

of the asymptotic W3, and the latter may be higher than the nominal significance level α

under such situations.

Naturally, the price for a low type I error rate is the loss in power; a more powerful test

is accompanied by a higher type I error rate, but the gain in power is not remarkable here.

Thus, the main issue in this comparison is the type I error rate.

Although the Monte–Carlo tests with continuously distributed statistic are exact in their

own right, the parametric bootstrap tests adopted here are not, because the test statistics are

discrete and a nuisance parameter λ1 = λ2 = λ has to be estimated. Since the upper bound

of pboot was used, the discreteness of the statistics would lead to conservative tests. On the

other hand, the estimation of the nuisance parameter might lead to a type I error rate that is

higher or lower than the nominal significance level α. From our simulation (including those

not reported here), in 102 out of the 120 cases considered, the simulated type I error rates

of the parametric bootstrap tests are less than α. For λ1 ≥ 5, the Cox F statistic always

gives the lowest simulated type I error rates among the four statistics, using the parametric

bootstrap. However, even though it is desirable to control the type I error rate to be below

the nominal significance level α, it is unnecessarily conservative to choose a statistic that

would give the lowest type I error rate; this rate should be as close to α as possible.

The clear message revealed from our simulation is that no test statistic is uniformly better

than the others; no test statistic could really have a completely controllable type I error rate,
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and no test statistic would always give the least deviation from the nominal significance level

for all different combinations of λ1 and d.

Nevertheless, we recommend the parametric bootstrap tests, because the type I error

rates seldom exceed α by more than 10% of α (in our simulation study, among the 18 cases

where the estimated type I error rates exceed 0.05, the maximum is only 0.0535), whilst the

asymptotic/approximate tests in 64 out of the 120 cases considered have type I error rates

higher than 0.05, in which 17 cases are 0.065 or above, i.e. 30% or more higher than α. Using

the parametric bootstrap setting, unlike Ng et al. [13] and Ng and Tang [14], we do not see

W3 or any one of these four statistics is universally superior to the others; any one of them is

sometimes better than the others under different combinations of λ1 and d. Thus, generally

speaking, the parametric bootstrap tests using these four statistics are more or less equally

trustworthy.

If only a pocket calculator is available so that parametric bootstrapping is not feasible,

then for small d and small λ1, we recommend the asymptotic W3 for its success in conser-

vativeness; for large d or large λ1, we recommend the approximate Cox F statistic for the

smaller deviation from the nominal significance level.

5 Real data

As we mentioned in Section 1, Boice and Monson [2] observed 41 cases of breast cancer in

28,010 person-years at risk among women repeatedly exposed to multiple X-ray fluoroscopies

and 15 cases in 19,017 person-years at risk among unexposed women, and Ray et al. [16]
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reported 175 injurious crashes in 17.3 thousand person-years at risk among women whilst

there were 320 in 21.4 thousand person-years at risk among men.

The p-values of the four statistics calculated from the asymptotic/approximate distri-

butions and estimated by using parametric bootstrapping are shown in Table 3; note that

when R = 999, the value of pboot is at least 0.001. We have strong evidence to reject the

equal rate null hypothesis at the 0.05 significance level and conclude that (1) the incidence

rate of breast cancer for women who had been exposed repeatedly to X-ray fluoroscopy is

higher than that for those who had not and (2) the incidence rate of injurious crashes for

men drivers is higher than that for women.

Since the differences are significant, the powers of the tests are irrelevant and the concern

is the possibility of committing a type I error. If we rescale the time axis so that the length of

the sampling frame of the first sample t1 is one unit time in each example, then the maximum

likelihood estimator λ̂1 = X1 and the constrained maximum likelihood estimator under the

null hypothesis λ̂1 = λ̂2 = (X1 + X2)/(1 + d) are large, suggesting that the true λ1 is likely

to be large in each example. Moreover, d’s are greater than 1 (1.47 and 1.27). An inspection

of Table 2 suggests that the type I error rates would not be substantially greater than the

nominal level α = 0.05 for large λ1 and d ≈ 1.5 and so none of these tests is overly liberal.
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Table 1: Estimated rejection rate by simulation, λ1 = 1 (Asym = Asymptotic; Approx =
Approximate; Boots = Bootstrap).

W2 W3 F L
d ρ Asym Boots Asym Boots Approx Boots Asym Boots

0.1 1.0 0.0761 0.0413 0.0422 0.0407 0.0761 0.0415 0.0422 0.0413
1.1 0.0749 0.0408 0.0418 0.0407 0.0749 0.0403 0.0418 0.0408
1.2 0.0882 0.0449 0.0455 0.0448 0.0882 0.0447 0.0455 0.0449
1.5 0.1062 0.0567 0.0571 0.0565 0.1062 0.0567 0.0571 0.0567
2.0 0.1403 0.0746 0.0756 0.0744 0.1402 0.0740 0.0755 0.0746
2.5 0.1631 0.0912 0.0929 0.0905 0.1631 0.0917 0.0929 0.0912
4.0 0.2604 0.1628 0.1655 0.1621 0.2604 0.1596 0.1655 0.1628

0.5 1.0 0.0393 0.0328 0.0012 0.0211 0.0393 0.0338 0.0393 0.0330
1.1 0.0497 0.0419 0.0026 0.0269 0.0497 0.0418 0.0497 0.0420
1.2 0.0538 0.0451 0.0021 0.0302 0.0538 0.0452 0.0538 0.0452
1.5 0.0790 0.0642 0.0063 0.0442 0.0790 0.0637 0.0790 0.0643
2.0 0.1313 0.1019 0.0168 0.0802 0.1313 0.1013 0.1313 0.1022
2.5 0.1824 0.1408 0.0303 0.1155 0.1824 0.1387 0.1824 0.1408
4.0 0.3600 0.2761 0.1160 0.2538 0.3600 0.2678 0.3600 0.2763

1.0 1.0 0.0300 0.0260 0.0008 0.0091 0.0310 0.0268 0.0972 0.0265
1.1 0.0421 0.0372 0.0009 0.0129 0.0441 0.0388 0.1139 0.0386
1.2 0.0450 0.0384 0.0015 0.0149 0.0477 0.0396 0.1345 0.0392
1.5 0.0749 0.0637 0.0028 0.0309 0.0798 0.0669 0.1687 0.0664
2.0 0.1256 0.1135 0.0126 0.0709 0.1389 0.1165 0.2402 0.1160
2.5 0.1900 0.1743 0.0333 0.1325 0.2150 0.1775 0.3095 0.1781
4.0 0.3818 0.3628 0.1686 0.3530 0.4420 0.3594 0.4989 0.3657

1.5 1.0 0.0072 0.0185 0.0000 0.0074 0.0238 0.0199 0.0712 0.0198
1.1 0.0096 0.0260 0.0000 0.0099 0.0327 0.0274 0.0852 0.0267
1.2 0.0146 0.0312 0.0001 0.0127 0.0399 0.0328 0.0995 0.0318
1.5 0.0303 0.0589 0.0005 0.0273 0.0692 0.0613 0.1386 0.0607
2.0 0.0712 0.1157 0.0025 0.0711 0.1402 0.1177 0.2264 0.1167
2.5 0.1372 0.1855 0.0127 0.1404 0.2229 0.1885 0.2971 0.1872
4.0 0.3725 0.4072 0.1186 0.4021 0.4747 0.4023 0.5081 0.4037

2.0 1.0 0.0071 0.0168 0.0000 0.0069 0.0215 0.0175 0.0551 0.0172
1.1 0.0102 0.0237 0.0000 0.0086 0.0298 0.0244 0.0692 0.0241
1.2 0.0130 0.0286 0.0000 0.0125 0.0362 0.0293 0.0825 0.0290
1.5 0.0321 0.0580 0.0000 0.0302 0.0701 0.0593 0.1316 0.0591
2.0 0.0793 0.1159 0.0012 0.0781 0.1411 0.1180 0.2124 0.1174
2.5 0.1502 0.1948 0.0063 0.1517 0.2289 0.1962 0.2958 0.1957
4.0 0.4181 0.4464 0.1192 0.4537 0.5047 0.4412 0.5261 0.4408

4.0 1.0 0.0009 0.0049 0.0000 0.0010 0.0073 0.0051 0.0392 0.0051
1.1 0.0015 0.0088 0.0000 0.0020 0.0132 0.0091 0.0557 0.0090
1.2 0.0040 0.0156 0.0000 0.0039 0.0208 0.0161 0.0761 0.0161
1.5 0.0148 0.0408 0.0000 0.0145 0.0534 0.0415 0.1424 0.0414
2.0 0.0591 0.1180 0.0000 0.0602 0.1406 0.1192 0.2440 0.1192
2.5 0.1582 0.2280 0.0005 0.1610 0.2544 0.2297 0.3378 0.2294
4.0 0.4362 0.4850 0.0652 0.5066 0.5239 0.4840 0.5687 0.4809
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Table 2: Estimated rejection rate by simulation, λ1 = 20 (Asym = Asymptotic; Approx =
Approximate; Boots = Bootstrap).

W2 W3 F L
d ρ Asym Boots Asym Boots Approx Boots Asym Boots

0.1 1.0 0.0674 0.0511 0.0621 0.0509 0.0582 0.0455 0.0497 0.0509
1.1 0.0828 0.0630 0.0762 0.0638 0.0711 0.0586 0.0621 0.0635
1.2 0.1098 0.0857 0.1015 0.0858 0.0959 0.0794 0.0835 0.0857
1.5 0.1929 0.1543 0.1814 0.1546 0.1719 0.1434 0.1526 0.1546
2.0 0.3716 0.3193 0.3570 0.3205 0.3421 0.3061 0.3166 0.3205
2.5 0.5511 0.4990 0.5377 0.5008 0.5216 0.4865 0.4955 0.5008
4.0 0.8883 0.8573 0.8825 0.8581 0.8702 0.8489 0.8546 0.8580

0.5 1.0 0.0514 0.0480 0.0505 0.0481 0.0505 0.0436 0.0505 0.0480
1.1 0.0855 0.0801 0.0836 0.0800 0.0836 0.0752 0.0836 0.0800
1.2 0.1256 0.1197 0.1247 0.1197 0.1247 0.1129 0.1247 0.1197
1.5 0.3205 0.3088 0.3189 0.3092 0.3187 0.2989 0.3187 0.3092
2.0 0.6988 0.6855 0.6960 0.6865 0.6949 0.6813 0.6948 0.6857
2.5 0.9166 0.9099 0.9145 0.9103 0.9143 0.9080 0.9143 0.9102
4.0 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

1.0 1.0 0.0498 0.0488 0.0478 0.0494 0.0514 0.0472 0.0514 0.0488
1.1 0.0887 0.0876 0.0864 0.0880 0.0916 0.0836 0.0918 0.0875
1.2 0.1503 0.1518 0.1470 0.1522 0.1552 0.1485 0.1553 0.1518
1.5 0.4023 0.3989 0.4014 0.3994 0.4071 0.3933 0.4071 0.3989
2.0 0.8353 0.8330 0.8347 0.8329 0.8360 0.8298 0.8360 0.8328
2.5 0.9787 0.9779 0.9782 0.9779 0.9788 0.9776 0.9788 0.9779
4.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.5 1.0 0.0479 0.0503 0.0463 0.0504 0.0528 0.0480 0.0556 0.0499
1.1 0.0963 0.0993 0.0931 0.0994 0.1024 0.0955 0.1042 0.0989
1.2 0.1556 0.1604 0.1519 0.1606 0.1649 0.1551 0.1672 0.1604
1.5 0.4513 0.4536 0.4462 0.4535 0.4581 0.4482 0.4621 0.4537
2.0 0.8912 0.8917 0.8889 0.8917 0.8929 0.8889 0.8961 0.8917
2.5 0.9931 0.9927 0.9927 0.9927 0.9934 0.9924 0.9935 0.9927
4.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2.0 1.0 0.0483 0.0497 0.0469 0.0496 0.0520 0.0491 0.0546 0.0497
1.1 0.0933 0.0980 0.0918 0.0985 0.0989 0.0946 0.1053 0.0980
1.2 0.1538 0.1623 0.1519 0.1625 0.1622 0.1592 0.1714 0.1623
1.5 0.4917 0.4979 0.4874 0.4983 0.5039 0.4937 0.5115 0.4981
2.0 0.9134 0.9157 0.9128 0.9157 0.9192 0.9144 0.9205 0.9158
2.5 0.9954 0.9951 0.9953 0.9951 0.9956 0.9948 0.9957 0.9951
4.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4.0 1.0 0.0423 0.0468 0.0423 0.0472 0.0473 0.0465 0.0508 0.0467
1.1 0.0940 0.1001 0.0940 0.1003 0.1004 0.0996 0.1080 0.0996
1.2 0.1692 0.1822 0.1681 0.1821 0.1825 0.1784 0.1911 0.1816
1.5 0.5400 0.5523 0.5341 0.5524 0.5572 0.5498 0.5670 0.5522
2.0 0.9459 0.9499 0.9457 0.9499 0.9506 0.9497 0.9529 0.9499
2.5 0.9991 0.9990 0.9990 0.9990 0.9992 0.9991 0.9992 0.9990
4.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 3: Estimated p-value for the real data sets (Asym = Asymptotic; Approx = Approx-
imate; Boots = Bootstrap).

W2 W3 F L
Source of data Asym Boots Asym Boots Approx Boots Asym Boots
Boice and Monson [2] 0.019 0.011 0.020 0.010 0.017 0.012 0.016 0.012

Ray et al. [16] 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001
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