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Abstract

We develop several continuous method models for convex quadratic programming

(CQP) problems with different types of constraints. The essence of the continuous

method is to construct one ordinary differential equation (ODE) system such that

its limiting equilibrium point corresponds to an optimal solution of the underlying

optimization problem. All our continuous method models share the main feature

of the interior point methods, i.e., starting from any interior point, all the solution

trajectories remain in the interior of the feasible regions.

First, we present an affine scaling continuous method model for nonnegativity

constrained CQP. Under the boundedness assumption of the optimal set, a thorough

study on the properties of the ordinary differential equation is provided, strong con-

vergence of the continuous trajectory of the ODE system is proved. Following the

features of this ODE system, a new ODE system for solving box constrained CQP

is also presented. Without projection, the whole trajectory will stay inside the box

region, and it will converge to an optimal solution. Preliminary simulation results

illustrate that our continuous method models are very encouraging in obtaining the

optimal solutions of the underlying optimization problems.

For CQP in the standard form, the convergence of the iterative first-order affine

scaling algorithm is still open. Under boundedness assumption of the optimal set

and nondegeneracy assumption of the constrained region, we discuss the properties

of the ODE system induced by the first-order affine scaling direction. The strong

convergence of the continuous trajectory of the ODE system is also proved.

Finally, a simple iterative scheme induced from our ODE is presented for find-

ing an optimal solution of nonnegativity constrained CQP. The numerical results

illustrate the good performance of our continuous method model with this iterative

scheme.

Keywords: ODE; Continuous method; Quadratic programming; Interior point method;

Affine scaling.
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Chapter 1

Introduction

From a general view, there are discrete iterative methods and continuous path meth-

ods in the field of computational optimization. Different from the conventional opti-

mization methods, the main feature of the continuous methods is that a continuous

path starting from the initial point can be generated. This path eventually will con-

verge to an equilibrium point (or a limit set), which is exactly an optimal solution (or

a subset of the optimal solution set) for the underlying optimization problem [42].

In fact, many iterative schemes can be regarded as the discrete realization of

certain continuous path. Among the methods for solving the unconstrained problems,

the steepest descend method, the Newton method and the power method, all can

be taken as typical discretization examples of the corresponding differential system

[12]. In solving the constrained linear programming (or quadratic programming),

the famous path-following algorithm also uses Newton’s method to trace the central

path, which is composed of minimizers for the logarithmic barrier family of problems

[46, 47, 48, 82].

So far, it has been hard to verify which (discrete or continuous) method takes

an advantage in finding the optimal solution in practice, because their performance

depends on the type of underlying problems and solvers (hardware devices) to a

great extent. Here, we do not attempt to give any answer to this controversial issue

either. It is worth the wait that these two types of methods will give full play to their

advantages in view of the actual situation. Based on the following considerations,

in this thesis we study the continuous methods for convex quadratic programming
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(CQP) problems with different types of constraints. For the continuous methods for

CQP, there are many new issues involved as listed below.

(a) Many numerical techniques can be used to follow the associated solution flows.

(b) Ordinary differential equation (ODE) may offer better understanding about the

convergence conditions for the corresponding discrete method.

(c) The continuous pathes can provide new search directions for discrete methods.

(d) The ODE system can be applied in large scale integrated circuites (LSIC) if

the structure of the continuous method is simple. For more results in this field,

please see [28, 73, 74, 75, 76, 77, 78, 80].

In the rest of this chapter, we introduce briefly general framework of continuous

methods, meanwhile display some important theoretical results for ODE and convex

programming.

1.1 Framework of the Continuous Method

The essence of the continuous method is to construct an ODE (dynamical) system,

whose limiting equilibrium point is an optimal solution of the underlying optimization

problem. All continuous method models can be represented into the following form
E(x(t))

dx(t)
dt

= f(x(t)), t ≥ t0,

x(t0) = x0,

(1.1)

where t ∈ R, x(t) : R → Rn, E(x) : Rn → R and f(x) : Rn → Rn, t0 is the initial

time, x0 is the initial point of x(t). E(x) is called the potential (energy) function,

whose value is nonincreasing monotonically as t → +∞, i.e.,

dE

dt
= (∇E(x(t)))T

dx(t)

dt
= ∇E(x(t)))Tf(x(t)) ≤ 0, ∀t ≥ t0.

2



Thus the convergence (or weak convergence) of the x(t) can be analyzed. Simulta-

neously, f(x) is required to be locally Lipschitz continuous (or together with other

conditions) to ensure that the solution trajectory x(t) is well defined. In other words,

there exists a unique solution x(t) for system (1.1) on [t0, +∞). For more details

about continuous method framework, please see [42]. In some special cases, f(x) may

be replaced by f(x, t), thus system (1.1) will be nonautonomous.

To solve constrained optimization problems, there are three ways in structuring

the f(x). Here we only list some representative references:

(i) adopting the gradient of certain penalty function [65, 72];

(ii) employing the KKT equations of the underlying optimization problem [71, 85]

and;

(iii) taking use of the projection together with variational inequality [74, 75, 79, 83].

Undoubtedly, the three technologies above play important roles in constructing con-

tinuous methods (or neural networks) in the past decades. In the case (i), since the

equilibrium point of (1.1) corresponds to the minimizer of the penalty function, we

only get an approximate solution, which may be very poor. In the case (ii), problem

dimension will become larger because the dual variable must be added to the ODE

system. In the case (iii), projection technology may bring numerical difficulties, such

as the phenomenon of zig-zags.

1.2 Preliminaries

1.2.1 Ordinary Differential Equation

Now, we recall some important definitions and theoretical results in the field of ODE.

In our continuous method models, all ODE systems (autonomous dynamical systems)

3



can be stated as 
dx(t)
dt

= h(x(t)), t ≥ 0,

x(0) = x0,
(1.2)

where x(t) : R → Rn, h(x) : Rn → Rn.

Definition 1.1. If a point x∗ ∈ Rn satisfies h(x∗) = 0, then x∗ is called an equilibrium

point of the ODE system (1.2).

Definition 1.2. h : X → Y is said to be Lipschitz continuous if there exists a real

constant L such that

∥h(x)− h(y)∥ ≤ L∥x− y∥, ∀ x, y ∈ X .

Definition 1.3. Let h : D → Rn be a continuous function defined in the open set

D ⊆ Rn. We say that f is locally Lipschitz continuous if for each x0 ∈ D, there is

an open set U ⊆ D containing x0 such that there is a constant L > 0 such that if x,

y ∈ U , then

∥h(x)− h(y)∥ ≤ L∥x− y∥.

The following Lemma is always used to verify whether the solution of ODE (1.2)

is well defined on [0, +∞),

Lemma 1.1. [37] Let D ⊆ Rn be an open set with x0 ∈ D and h : D → Rn be locally

Lipschitz continuous with D. Then the ODE system (1.2) has a unique solution x(t)

with [0, α) being the right maximal interval of existence. Furthermore, if there exists

a compact set Ω ⊆ D such that the curve

Γx0 = {x(t) ∈ Rn | t ∈ [0, α)} ⊆ Ω,

then α = +∞.

The following Barbalat Lemma will play an important role for the weak conver-

gence of every continuous method throughout this thesis.
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Lemma 1.2. (Barbalat’s Lemma) [61] If the differentiable function g(t) has a finite

limit as t → +∞, and ġ is uniformly continuous, then ġ → 0 as t → +∞.

1.2.2 Convex Programming

In this thesis, we will focus on CQP, which has many applications that include port-

folio selection, constrained least squares, robotics, and sequential quadratic program-

ming approaches to nonlinear programming problems. It is necessary to recall two

fundamental theorems in convex programming, due to the important role they paly.

The general convex programming is of the following form

min
x∈Ω

f(x) (1.3)

where Ω is a convex subset of Rn, and f : Rn → R is convex.

Lemma 1.3. [25] If gi : Rn → R, i = 1, . . . ,m, are concave functions, and if

G = {x | gi(x) ≥ 0, i = 1, . . . ,m} is a nonempty bounded set, then for any set of

values {ϵi}, where ϵi ≥ 0, i = 1, . . . ,m, the set

{x | gi(x) ≥ −ϵi, i = 1, . . . ,m}

is bounded.

By Lemma 1.3, if the optimal solution set of problem (1.3) is bounded, then for

any point x0 ∈ Ω, the level set {x ∈ Ω | f(x) ≤ f(x0)} is bounded.

Lemma 1.4. [44, 67] Let f : Rn → R be a convex twice continuously differentiable

function. If f(·) is constant on a convex set Ω ∈ Rn, then ∇f(·) is constant on Ω.

Even though the following two lemmas may not be necessarily relevant to convex

function, they are also important for this thesis.

Lemma 1.5. [58] Suppose scalar function h(t) is differentiable on [t0, T ] with h(t0) =

0. If there exists an M > 0 such that |dh
dt
| ≤ M |h(t)|, t ∈ [t0, T ], then h(t) = 0 for

all t ∈ [t0, T ].

5



Lemma 1.6. (Inverse Function Theorem) Let D2 ⊂ Rn be open and f : D2 → Rn be

a continuously differentiable function on D2. If f ′(α) is invertible for some α ∈ D2,

then, there exists a neighborhood U of α and a neighborhood V of η := f(α) such that

f is an invertible function on U .

Proof. See Theorem 9.24 in [58].

The above inverse function theorem will be used to prove the uniqueness of the

solution for nonlinear equations in some neighborhood.

1.2.3 Notation

For simplicity, in what follows, unless otherwise specified, Rn
+ denotes the constrained

region {x ∈ Rn | x ≥ 0}, ∥ · ∥ denotes the 2-norm, xj denotes the j-th component

of a vector x, e denotes the n-dimensional vector of all ones, ei denotes the unity

column vector whose ith component is 1. For each index subset J ⊆ {1, . . . , n}, we

denote by xJ the vector composed of those components of x ∈ Rn indexed by j ∈ J .

In stands for the n× n identity matrix, X = diag(x1, x2, . . . , xn) ∈ Rn×n.

1.3 Outline of the Thesis

Through the interior point algorithms for solving CQP, path following and affine

scaling algorithms get most of the attentions, the original ideas behind these two

algorithms are completely different. The search direction in the path following algo-

rithm is attained by solving the Newton direction associated with the KKT system

of equations of some strictly convex programming, whose objective function is a log-

arithmic barrier function. Thus the iterative points are always close to the central

path [39, 47]. But in the affine scaling algorithm, the search direction is obtained

by minimizing a first-order linear (or a quadratic) approximation of the objective

function over the intersection of the feasible region with the ellipsoid centered at the

6



current point, and the next point is determined by performing a line search along

this direction [51, 67, 63]. The convergence of the first-order affine scaling algorithm

has not been solved well so far [33].

We will adopt the framework of the continuous method outlined in [42] to con-

struct our ODE systems. The key idea in the continuous method is to formulate an

ODE system for each optimization problem such that the limiting equilibrium point

of the ODE corresponds to an optimal solution of the underlying optimization prob-

lem. In this thesis, the interior point affine scaling directions will be adopted. As a

result, the continuous trajectories of ODEs become the central issue in our study.

In Chapter 2, first we present an affine scaling continuous method model for

nonnegativity constrained CQP. Under the boundedness assumption of the optimal

solution set, a thorough study on the properties of the ordinary differential equation

is provided. The strong convergence of the continuous trajectory is proved. Moti-

vated by features of this ODE system, we present a new ODE system for solving box

constrained CQP. Without projection, the whole trajectory will stay inside the box

region, and it will converge to an optimal solution. Preliminary simulation results il-

lustrate that our continuous method models are encouraging in obtaining the optimal

solutions of the optimization problems.

In Chapter 3, for CQP in the standard form, under boundedness assumption of

the optimal solution set and nondegeneracy assumption of the constrained region,

we discuss the properties of the ODE system induced by the first-order affine scaling

direction. The strong convergence of the continuous trajectory is also proved.

Finally, concluding comments and future study are given in Chapter 4. A simple

iterative method is presented for solving nonnegativity constrained CQP. Compared

with the classical numerical methods for ODE system, our iterative points are not

necessarily close to the real solution trajectory. Preliminary experimental results

illustrate the good performance of our iterative method.

7



Chapter 2

First-order Affine Scaling

Continuous Method for

Nonnegativity and Box

Constrained CQP

2.1 Introduction

The general box (bound) constrained CQP is of the following form

min q(x) = 1
2
xTQx+ cTx

s.t. l ≤ x ≤ u,
(P1)

where c, l and u are given vectors in Rn, Q = (qij)n×n ∈ Rn×n. We assume throughout

this thesis that Q is symmetric and positive semi-definite.

Problem (P1) frequently arises in numerical analysis applications, optimal control,

and subproblems in general nonlinear optimization algorithms. For more details,

please see [17, 54] and references therein.

If for any i ∈ {1, . . . , n}, li is bounded and ui = +∞, problem (P1) can be easily

converted into the following nonnegativity constrained quadratic programming

min q(x) = 1
2
xTQx+ cTx

s.t. x ≥ 0.
(P2)

8



Nonnegativity constrained quadratic programming problems always arise in sci-

ence, engineering and business, and they may fall into nonnegative least-squares

problems. In support vector machines, computing the maximum margin hyperplane

also gives rise to a nonnegativity constrained quadratic programming problem [60].

Furthermore, if li and ui are both bounded, and li < ui for any i ∈ {1, . . . , n},

problem (P1) can be converted into the following special box constrained quadratic

programming

min q(x) = 1
2
xTQx+ cTx

s.t. 0 ≤ x ≤ e.
(P3)

For the interior point algorithms, central path is an important concept. Consid-

ering the following logarithmic barrier function optimization problem

min 1
2
xTQx+ cTx− µ

n∑
j=1

lnxj

s.t. x > 0,

(P2(µ))

where µ > 0 is a barrier penalty parameter. The corresponding KKT system is Qx+ c = s, s > 0,

Xs = µe, x > 0,
(2.1)

where s ∈ Rn. Under the boundedness assumption of the optimal solution set for

problem (P2), for any given µ > 0, there exists a unique solution of the KKT system

(2.1) for x and s in terms of µ, which can be denoted by x(µ) and s(µ), respectively.

The pair (x(µ), s(µ)) is called the central point corresponding to µ. Denote central

path {(x(µ), s(µ)) | µ > 0}, which has continuous first-order derivatives with respect

to µ. After a straightforward calculation, we have

dx

dµ
=

1

µ2
(In +

1

µ
X2Q)−1X2(Qx+ c). (2.2)

For analytical simplicity, we define t = 1
µ
, then (2.2) becomes

dx

dt
= −(In + tX2Q)−1X2(Qx+ c). (2.3)

9



The right-hand-side of (2.3) is the centering direction for problem (P2). The

existence and convergence of the central path for the general convex programming

can be found in [52, 23], which provide very detailed discussion.

At some interior point x > 0, we consider the following first-order affine scaling

subproblem

min
d

(Qx+ c)Td

s.t. ∥X−1d∥2 ≤ β2 < 1,
(2.4)

where β > 0 is a constant. The optimal solution of (2.4) is

d = −βX2(Qx+ c)

∥X(Qx+ c)∥
, (2.5)

which is a first-order affine scaling direction for problem (P2).

If Q = 0, i.e., the problem (P2) reduces to linear programming, then the centering

direction and the affine scaling direction are the same.

In this chapter, we will adopt the framework of a continuous method outlined in

[42]. The key idea in the continuous method is to formulate ODE for each optimiza-

tion problem such that the limiting equilibrium point of the ODE corresponds to an

optimal solution of the underlying optimization problem. In constructing the ODE

system for problem (P2), interior point affine scaling direction will be adopted. As a

result, the continuous trajectory becomes the central issue in our study.

The rest of this chapter is organized as follows. In Section 2.2, an ODE will be

constructed for problem (P2). Then, a thorough study on the continuous trajectory

of this ODE will be investigated. Various theoretical properties including the strong

convergence will be explored. In Section 2.3, similar study and investigations for

problem (P3) will be conducted. Some preliminary numerical results of the two

ODEs are illustrated in Section 2.4. Finally, some concluding remarks are drawn in

Section 2.5.
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2.2 An Affine Scaling Continuous Method for Non-

negativity Constrained CQP

The presentation of this section will be organized in the following three subsections

(1) Construction of an ODE. In addition, some fundamental properties for this

ODE will be discussed;

(2) Properties for the continuous trajectory. The focus in this subsection is two

folds. First, the weak convergence of this trajectory will be addressed. Second,

the optimality property for the limit set of the continuous trajectory will be

shown;

(3) Strong convergence. Strong convergence of the continuous trajectory will be

proved here.

2.2.1 Construction of an ODE

Following the geometry for linear programming in [6] and the direction d in (2.5), the

direction

d(x) = −X2(Qx+ c), (2.6)

can be adopted. The KKT system of problem (P2) can be stated as follows Qx+ c = s, s ≥ 0,

Xs = 0, x ≥ 0.
(2.7)

which is a linear complementary problem. According to the analysis above, we adopt

the following direction

p1(x) = −X(Qx+ c) (2.8)

as the interior point affine scaling direction for problem (P2). Even though direction

d(x) in (2.6) and direction p1(x) in (2.8) are different, yet they are equivalent (by a

factor of X). All of our results on p1(x) also hold for d(x). Based on the interior
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point affine scaling direction p1(x) in (2.8), the following ODE for problem (P2) can

be constructed. 
dx(t)
dt

= −X(Qx+ c), t ≥ 0,

x(0) = x0 > 0.
(2.9)

It should be noted that ifQ = 0, our ODE (2.9) is equivalent to the first differential

equation on page 515 in [6]. To simplify the following presentation, in the remaining

of this thesis, x(t) (or X(t)) will be replaced by x (or X) whenever no confusion

would occur, throughout this section we make the following assumption.

Assumption 1. The optimal solution set for problem (P2) is bounded.

For given x0 in ODE (2.9), define level set

L1(x
0) = {x ∈ Rn

+ | q(x) ≤ q(x0)}. (2.10)

Following Lemma 1.3 in Chapter 1 and Assumption 1, we have

Lemma 2.1. For problem (P2), the level set L1(x
0) is bounded.

Since X(Qx + c) is continuously differentiable on Rn, obviously X(Qx + c) is

locally Lipschitz continuous on Rn. From Lemma 1.1, there exists a unique solution

x(t) for ODE (2.9) on the maximal existence interval [0, β) for some β > 0.

Theorem 2.1. Let x(t) be the solution of ODE (2.9) with the maximal existence

interval [0, β). Then x(t) > 0 for any t ∈ [0, β).

Proof. We will prove x(t) > 0 for any t ∈ [0, β) by contradiction. Suppose that

there exists a t∗ ∈ [0, β) and an i ∈ {1, . . . , n} such that xi(t
∗) = 0. Since xi(t) is

continuous on t, let t∗ be the minimum t such that xi(t) = 0 for some i ∈ {1, . . . , n},

i.e., x(t) > 0 for all 0 ≤ t < t∗.

Let

M = max
t∈[0, t∗]

∥Qx(t) + c∥+ 1, (2.11)
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and

t1 = max{t∗ − 1

2M
, 0},

and t̄ be the time satisfying

xi(t̄) = max
t∈[t1, t∗]

xi(t) > 0.

Notice that

dx(t)

dt
= −X(Qx+ c),

we have

xi(t) = xi(t
∗) +

∫ t∗

t

xi(τ)(Qx(τ) + c)idτ.

For any t ∈ [t1, t∗], notice that xi(t
∗) = 0 and xi(t) ≥ 0, from the above equation,

we have

xi(t) ≤ M(t∗ − t) max
τ∈[t, t∗]

xi(τ)

≤ M(t∗ − t1) max
t∈[t1, t∗]

xi(t)

= M(t∗ − t1)xi(t̄)

≤ 1

2
xi(t̄).

Since t ∈ [t1, t
∗] is arbitrary, taking t = t̄, then

xi(t̄) ≤
1

2
xi(t̄),

thus xi(t̄) = 0, which is a contradiction with the definition of t̄.

Suppose x(t) is the solution of ODE (2.9), and [0, β) is the corresponding maximal

existence interval. By Theorem 2.1, x(t) > 0 for any t ∈ [0, β), thus

dq(x(t))

dt
= −(Qx+ c)TX(Qx+ c) ≤ 0, ∀t ∈ [0, β), (2.12)

i.e., q(x) is nonincreasing monotonically along the solution trajectory x(t), so x(t) is

contained in the compact level set L1(x
0). By Lemma 1.1, the following corollary is

obvious.
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Corollary 2.1. There exists a unique solution x(t) for ODE (2.9) on [0, +∞), and

x(t) > 0 for any t ∈ [0, +∞).

2.2.2 Properties for the Continuous Trajectory

Now we show the weak convergence of the solution x(t) of ODE (2.9), i.e., the right-

hand-side of ODE (2.9) approaching to zero.

Theorem 2.2. Let x(t) be the solution of ODE (2.9). Then lim
t→+∞

X(Qx+ c) = 0.

Proof. From Corollary 2.1, we know that the unique solution x(t) of ODE (2.9) is

always positive on [0,+∞). Since dq(x)
dt

= −(Qx + c)TX(Qx + c) ≤ 0 and q(x) is

bounded below, q(x) has a finite limit along the trajectory x(t). Obviously, (Qx +

c)TX(Qx + c) is continuously differentiable with respect to x, and x(t) is contained

in compact level set L1(x
0). Therefore, there exists a constant K1 > 0 such that

|dq(x)
dt

|t=t1 −
dq(x)

dt
|t=t2 | ≤ K1∥x(t1)− x(t2)∥

= K1∥
∫ t2

t1

X(Qx+ c)dt∥

≤ K2K1|t1 − t2|,

where K2 = max
x∈L1(x0)

∥X(Qx + c)∥. Thus dq(x)
dt

is uniformly continuous on [0,+∞).

Then Barbalat’s Lemma 1.2 ensures that

lim
t→+∞

(Qx+ c)TX(Qx+ c) = 0,

Since x(t) is bounded and nonnegative, we have

lim
t→+∞

X(Qx+ c) = 0.

Theorem 2.2 ensures the weak convergence of x(t), i.e. dx(t)
dt

→ 0 as t → +∞.

The results in the following theorems reveal more properties on the trajectory x(t)

of ODE (2.9).
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Theorem 2.3. (i) If x is an optimal solution of problem (P2) and x > 0, then

Qx+ c = 0. (ii) Let x(t) be the solution of ODE (2.9). If X(Qx+ c)|x=x0 = 0, then

x(t) ≡ x0 for all t ≥ 0. Moreover, x0 is an optimal solution of problem (P2).

Proof. If x > 0 is an optimal solution of problem (P2), the KKT system (2.7) implies

X(Qx+ c) = 0. Thus Qx+ c = 0, (i) is proved.

From ODE (2.9), we know

dxi(t)

dt
= −xi(t)(Qx+ c)i, i = 1, . . . , n.

Therefore,

|dxi(t)

dt
| ≤ |xi(t)|∥(Qx+ c)∥ ≤ |xi(t)| max

x∈L1(x0)
∥Qx+ c∥,

by Lemma 1.5, we have x(t) ≡ x0 for all t ≥ 0.

Furthermore, since x0 > 0, and X(Qx+ c)|x=x0 = 0, we have

Qx0 + c = 0.

Clearly, x0 is an optimal solution of problem (P2).

The result in the following theorem indicates that if x0 is not an optimal solution

for problem (P2), then ODE system (2.9) will never stop in finite time.

Theorem 2.4. Let x(t) be the solution of ODE (2.9). If X(Qx + c)|t=0 ̸= 0, then

X(Qx+ c) ̸= 0 for any t ≥ 0.

Proof. Assume that the conclusion is not true. Then there exists a finite time, say

t̄ > t0, such that X(Qx+c)|t=t̄ = 0. From the continuity of X(Qx+c), we can assume

that t̄ is the minimum t such thatX(Qx+c) = 0. We know thatX(Qx+c) is Lipschitz

continuous in bounded set L1(x
0), and let L̄ be the corresponding Lipschitz constant
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and δ = min{ t̄
2
, 1
2L̄
}. Then for any t1, t2 ∈ [t̄− δ, t̄], we have

∥X(Qx+ c)|t=t1∥ − ∥X(Qx+ c)|t=t2∥

≤ ∥X(Qx+ c)|t=t1 −X(Qx+ c)|t=t2∥

≤ L̄∥x(t1)− x(t2)∥

= L̄∥
∫ t2

t1

X(Qx+ c)|t=τdτ∥

≤ L̄ · δ · max
τ∈[t̄−δ,t̄]

∥X(Qx+ c)|t=τ∥.

Notice that the above inequality is true for any t1, t2 ∈ [t̄−δ, t̄] andX(Qx+c)|t=t̄ =

0, then we can choose t1 and t2 such that

∥X(Qx+ c)|t=t1∥ = max
τ∈[t̄−δ,t̄]

∥X(Qx+ c)|t=τ∥,

and

∥X(Qx+ c)|t=t2∥ = min
τ∈[t̄−δ,t̄]

∥X(Qx+ c)|t=τ∥,

thus we have

0 = min
τ∈[t̄−δ,t̄]

∥X(Qx+ c)|t=τ∥ ≥ (1− L̄δ) max
τ∈[t̄−δ,t̄]

∥X(Qx+ c)|t=τ∥,

this implies that X(Qx + c)|t=τ = 0 for any τ ∈ [t̄− δ, t̄] which contradicts with the

definition of t̄. Thus the proof is complete.

In the remaining part of this section, we will show that any cluster point of x(t),

which is the solution of ODE (2.9), is an optimal solution for problem (P2). But first,

let us define the limit set

Ω1(x
0) = {y ∈ Rn

+ | y is a cluster point of x(t) of ODE (2.9)}. (2.13)

Because of the boundedness of x(t), Ω1(x
0) is nonempty, compact, and connected

(see Theorem 1.1 on page 390 in [15]).

Following the KKT conditions in (2.7) for problem (P2), we can define the dual

estimate as

s(x) = Qx+ c. (2.14)
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Note: s(x(t)) may be not nonnegative for all t ≥ 0. Furthermore, we choose an

x̄ ∈ Ω1(x
0), and define

s̄ = Qx̄+ c. (2.15)

Corollary 2.2. (i) q(x) = q(x̄) ∀x ∈ Ω1(x
0). (ii) Xs(x) = 0 ∀x ∈ Ω1(x

0), where

s(x) is defined in (2.14).

Proof. (i) Since dq(x)
dt

= −(Qx + c)TX(Qx + c) ≤ 0 and q(x) is bounded below, it is

easy to see that q(x) equals a constant for any x ∈ Ω1(x
0).

(ii) From Theorem 2.2, this is straightforward.

For the pair x̄ and s̄, we define

J̄ = {j|s̄j = 0, j ∈ {1, · · · , n}}, J̄ c = {1, . . . , n} \ J̄ , (2.16)

Λ̄1 = {x ∈ Rn
+|xJ̄c = 0, q(x) = q(x̄)}. (2.17)

From Theorem 2.2, we have

X̄s̄ = 0 or x̄is̄i = 0, i = 1, · · · , n.

This and the definition of J̄ c imply for any j ∈ J̄ c

s̄j ̸= 0 and x̄j = 0.

This and Corollary 2.2 (i) ensure that the set Λ̄1 is nonempty since x̄ ∈ Λ̄1. In

addition, it is easy to see that Λ̄1 is closed. Next we will reveal some properties for

Λ̄1.

Lemma 2.2. Λ̄1 is convex.
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Proof. Let x be an arbitrary point in the convex hull co(Λ̄1) of Λ̄1, i.e., x is a positive

linear convex combination of some points in Λ̄1. From the definition of Λ̄1 in (2.17),

we know that xJ̄c=0 and x ≥ 0. From the convexity of q(x), the following inequality

holds

q(x) ≤ q(x̄).

On the other hand, let ∆x = x − x̄. Then (∆x)J̄c = 0, s̄T (∆x) = 0, again by the

convexity of q(x), we have

q(x) ≥ q(x̄) +∇q(x̄)T (∆x)

= q(x̄) + s̄T (∆x)

= q(x̄).

So q(x) = q(x̄) for all x ∈ co(Λ̄1), thus x ∈ Λ̄1 and Λ̄1 is convex.

Lemma 2.3. s(x) = s̄ for all x ∈ Λ̄1.

Proof. From the definition of Λ̄1, q(x) = q(x̄) ∀x ∈ Λ̄1. Then Lemma 2.2 and Lemma

1.4 ensures the result.

Theorem 2.5. Ω1(x
0) ⊆ Λ̄1.

Proof. Our proof here is similar to the one for Lemma 8 in [67]. If J̄ c is empty, Λ̄1

becomes {x ∈ Rn
+|q(x) = q(x̄)}. From Corollary 2.2 (i), the result holds clearly.

Suppose there exists a point x̂ ∈ Ω1(x
0) but x̂ /∈ Λ̄1 with x̂ĵ > 0 for some ĵ ∈ J̄ c,

then q(x̂) = q(x̄) and x̂ ≥ 0. Clearly Λ̄1 lies inside the bounded level set L1(x
0), this

and Λ̄1 being closed ensure that Λ̄1 is compact. Thus s(x) is uniformly continuous

over Λ̄1. Lemma 2.3 implies that, for all δ > 0 sufficiently small, we have

|sj(x)| ≥ |s̄j|/2 ∀j ∈ J̄c, ∀x ∈ U(Λ̄1, δ), (2.18)

where U(Λ̄1, δ) is the δ-neighborhood of set Λ̄1. We take δ small enough so that δ < x̂ĵ.

Then x̂ /∈ U(Λ̄1, δ) since |x̂ĵ − xĵ| = x̂ĵ > δ for all x ∈ Λ̄1. Notice x̄ ∈ Ω1(x
0) ∩ Λ̄1
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and x̂ ∈ Ω1(x
0) but x̂ /∈ U(Λ̄1, δ), by the connectivity of Ω1(x

0), there must exist a

x̃ ∈ Ω1(x
0) ∩ U(Λ̄1, δ) but x̃ /∈ Λ̄1. x̃ ∈ Ω1(x

0) ensures

x̃ ≥ 0, q(x̃) = q(x̄).

x̃ /∈ Λ̄1 indicates that there must exist some r ∈ J̄c such that x̃r ̸= 0. (2.18) and

x̃ ∈ U(Λ̄1, δ) imply |sj(x̃)| ≥ |s̄j|/2 for all j ∈ J̄ c, thus X̃s(x̃) ̸= 0, which contradicts

with the fact X̃s(x̃) = 0 since x̃ ∈ Ω1(x
0) from Corollary 2.2 (ii).

Theorem 2.6. If x(t) is the solution of ODE (2.9), lim
t→+∞

(Qx(t)+ c) = s̄ and s̄ ≥ 0.

Proof. Based on the continuity of s(x(t)), compactness of Ω1(x
0), Lemma 2.3 and

Theorem 2.5, it is easy to have

lim
t→+∞

(Qx(t) + c) = s̄.

Suppose there exists some j̄ ∈ {1, . . . , n} such that s̄j̄ < 0. For any cluster point

x̂ ∈ Ω1(x
0), from Corollary 2.2 (ii), we have X̂s(x̂) = 0. This, Lemma 2.3, and

Theorem 2.5 imply X̂s̄ = 0, thus x̂j̄ = 0. Since s(x(t)) is continuous, there exists

some tK such that sj̄(x(t)) < 0 for all t ≥ tK , notice that

dx(t)

dt
= −X(Qx+ c),

and x(t) > 0 for all t ≥ 0. We have
dxj̄(t)

dt
≥ 0 and xj̄(t) ≥ xj̄(tK) > 0 for all t ≥ tK ,

which contradicts with x̂j̄ = 0, thus the proof is complete.

Theorem 2.7. Any point x ∈ Ω1(x
0) is an optimal solution of problem (P2).

Proof. For any x ∈ Ω1(x
0), by Corollary 2.2 (ii), Lemma 2.3, Theorem 2.5, and

Theorem 2.6, the following conditions hold Qx+ c = s̄, s̄ ≥ 0,

Xs̄ = 0, x ≥ 0,
(2.19)

which are exactly the KKT conditions (2.7).
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The result in Theorem 2.7 ensures that any limit point of x(t) of ODE (2.9) is an

optimal solution for problem (P2).

Theorem 2.8. Let x(t) be the solution of ODE (2.9). If J̄c defined in (2.16) is

nonempty, there exist two positive constants γ and M̄ such that xj(t) ≤ M̄e−γt, for

all j ∈ J̄c.

Proof. If x(t) is the solution of ODE (2.9), we know from Theorem 2.6 that lim
t→+∞

[Qx(t)+

c] = s̄ and s̄ ≥ 0. If J̄ c is nonempty, let

γ =
1

2
min
j∈J̄c

{s̄j}.

Clearly γ > 0, and there exists a T sufficiently large such that

[Qx(t) + c]j ≥ γ, ∀j ∈ J̄ c and t ≥ T.

Thus ∀j ∈ J̄c and t ≥ T ,

d(xj(t)e
γt)

dt
= eγt(

dxj(t)

dt
+ γxj(t))

= eγtxj(t)(−[Qx(t) + c]j + γ)

≤ 0.

The above inequality implies that xj(t)e
γt (∀j ∈ J̄ c) is nonincreasing monotonically

when t > T , there exists an M̄ > 0 such that

xj(t)e
γt ≤ M̄, ∀j ∈ J̄ c,

or

xj(t) ≤ M̄e−γt, ∀j ∈ J̄c.

Theorem 2.8 indicates that if J̄ c is nonempty, xj(t) (j ∈ J̄ c) will converge to zero

exponentially.
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2.2.3 Strong Convergence

The task of this section is to prove that the solution x(t) of ODE (2.9) converges to

an optimal solution of problem (P2) as t → +∞. Our strategy is to show that the

set Ω1(x
0) defined in (2.13) contains a single point.

Theorem 2.9. Ω1(x
0) defined in (2.13) only contains a single point.

Proof. Since Ω1(x
0) is nonempty, assume x∗ ∈ Ω1(x

0) and the number of its nonzero

components is maximum for all x ∈ Ω1(x
0), then the index set {1, . . . , n} can be

partitioned into two disjoint sets B and N such that

B = {i|x∗
i > 0, i ∈ {1, . . . , n}} and N = {i|x∗

i = 0, i ∈ {1, . . . , n}}.

If B = ∅, we can conclude there is a single point x∗ = 0 in Ω1(x
0). So we will focus

on the case that B is nonempty, without loss of generality, we assume

B = {1, . . . , k} (k ≥ 1) and N = {k + 1, . . . , n}.

Correspondingly, for any x ∈ Rn, it can be denoted by x =

xB

xN

. Similarly, we can

partition s =

sB

sN

, c =

cB

cN

 respectively, where xB, sB, cB ∈ Rk, and xN , sN ,

cN ∈ R(n−k).

Let δ1 =
1
2
min
i∈B

{x∗
i }. Together with the definition of x∗, we know

xB > 0 and xN = 0 ∀x ∈ Ω1(x
0) ∩ U(x∗, δ1), (2.20)

where U(x∗, δ1) is the δ1−neighborhood of x∗. Next we will prove that x∗ is an

isolated point of Ω1(x
0).

For any point x ∈ Ω1(x
0), from Lemma 2.3 and Theorem 2.5, we have

Qx+ c = Qx∗ + c
.
= s∗. (2.21)
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For the convenience of discussion, we denote

Q = [q1, q2, . . . , qn] and b = s∗ − c.

If x ∈ Ω1(x
0) ∩ U(x∗, δ1), we have xB > 0 and xN = 0. Then the first equality in

(2.21) can be written as

x1q1 + · · ·+ xkqk = b ∀x ∈ Ω1(x
0) ∩ U(x∗, δ1). (2.22)

Thus, rank[q1, q2, . . . , qk] = rank[q1, q2, . . . , qk, b].

If rank[q1, q2, . . . , qk] = k, b can be expressed uniquely as a linear combination of

q1, q2, . . . , qk, thus except for x
∗, there is no x in Ω1(x

0) ∩ U(x∗, δ1) such that (2.22)

holds, in other words, x∗ is an isolated point of Ω1(x
0).

If rank[q1, q2, . . . , qk] = r < k and r = 0, then q1 = q2 = · · · = qk = 0, dxi(t)
dt

in

ODE (2.9) will be reduced to

dxi(t)

dt
= −cixi, i = 1, . . . , k.

From Theorem 2.2, lim
t→+∞

dxi(t)
dt

= 0, thus there are two cases

(a) ci = 0 ⇒ xi(t) ≡ x0
i , since x

0
i > 0 is arbitrary, therefore the optimal solution set

is unbounded, which contradicts with the boundedness of the optimal solution

set;

(b) ci ̸= 0 ⇒ x∗
i = 0, this is a contradiction with the assumption that x∗

i is positive.

So we only consider the case that 1 ≤ r < k, and assume {qp1 , qp2 , . . . , qpr} is a

maximum linearly independent subset of {q1, q2, . . . , qk}, and {qpr+1 , qpr+2 , . . . , qpk} =

{q1, q2, . . . , qk} \ {qp1 , qp2 , . . . , qpr}. Thus there exists a matrix W = (wij)(k−r)×r ∈

R(k−r)×r such that

qpr+i
=

r∑
j=1

wijqpj , i = 1, . . . , k − r. (2.23)
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We consider the following sub-system (k rows) of the first equation in (2.21)

qTp1x = bp1 ,

...

qTprx = bpr ,

qTpr+1
x = bpr+1 ,

...

qTpkx = bpk .

(2.24)

Combining (2.24) with (2.23), we have

bpr+i
=

r∑
j=1

wijbpj , i = 1, . . . , k − r. (2.25)

From Corollary 2.2 (ii), we have X∗s∗ = 0 which implies s∗B = 0. Thus

cB = −bB,

where b =

bB

bN

. This and (2.25) indicate

cpr+i
=

r∑
j=1

wijcpj , i = 1, . . . , k − r. (2.26)

Clearly x∗ is a solution of (2.24), but linear system (2.24) is degenerate. In

overcoming the difficulty caused by the degeneracy of linear system (2.24), we define

yi(t) =
r∑

j=1

wij lnxpj(t)− lnxpr+i
(t), i = 1, . . . , k − r, t ≥ 0, (2.27)

where x(t) is the solution of ODE (2.9). From Theorem 2.1, we know x(t) > 0 for all

t ≥ 0. Therefore, yi(t), i = 1, . . . , k − r are well defined for t ≥ 0. Notice that

dx(t)

dt
= −X(Qx+ c),

then we have

dyi(t)

dt
=

r∑
j=1

wij

dxpj (t)

dt

xpj

−
dxpr+i (t)

dt

xpr+i

= (−
r∑

j=1

wijq
T
pj
+ qTpr+i

)x−
r∑

j=1

wijcpj + cpr+i
((2.23) and (2.26))

≡ 0, i = 1, . . . , k − r, t ≥ 0.
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Thus there exist k − r constants c̄i (i = 1, . . . , k − r) such that

yi(t) ≡ c̄i, i = 1, . . . , k − r, t ≥ 0.

In particular,

r∑
j=1

wij lnxpj − lnxpr+i
≡ c̄i, i = 1, . . . , k − r, ∀x ∈ Ω1(x

0) ∩ U(x∗, δ1). (2.28)

Let H ∈ Rr×k be a matrix generated by choosing r linearly independent rows, say

l1, . . . , lr, from matrix [qp1 , . . . , qpr , qpr+1 , . . . , qpk ]. Thus H can be written as

H =


ql1p1 · · · ql1pr ql1pr+1 · · · ql1pk

ql2p1 · · · ql2pr ql2pr+1 · · · ql2pk
...

. . .
...

...
. . .

...

qlrp1 · · · qlrpr qlrpr+1 · · · qlrpk


.

Then the following nonlinear system is introduced



ql1p1z1 + · · ·+ ql1przr + ql1pr+1zr+1 + ql1pr+2zr+2 + · · ·+ ql1pkzk = bl1,

ql2p1z1 + · · ·+ ql2przr + ql2pr+1zr+1 + ql2pr+2zr+2 + · · ·+ ql2pkzk = bl2,

...

qlrp1z1 + · · ·+ qlrprzr + qlrpr+1zr+1 + qlrpr+2zr+2 + · · ·+ qlrpkzk = blr,

w11 ln z1 + · · ·+ w1r ln zr − ln zr+1 − 0− 0− · · · − 0 = c̄1,

w21 ln z1 + · · ·+ w2r ln zr − 0− ln zr+2 − 0− · · · − 0 = c̄2,

...

w(k−r)1 ln z1 + · · ·+ w(k−r)r ln zr − 0− 0− 0− · · · − ln zk = c̄k−r.

(2.29)

From (2.24) and (2.28), we know that for any x ∈ Ω1(x
0) ∩ U(x∗, δ1), z =

(xp1 , . . . , xpr , xpr+1 , . . . , xpk)
T is a solution of system (2.29).
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The Jacobian matrix of nonlinear system (2.29) is

J(z) =



ql1p1 · · · ql1pr ql1pr+1 ql1pr+2 · · · ql1pk

ql2p1 · · · ql2pr ql2pr+1 ql2pr+2 · · · ql2pk
...

. . .
...

...
...

. . .
...

qlrp1 · · · qlrpr qlrpr+1 qlrpr+2 · · · qlrpk

w11
1
z1

· · · w1r
1
zr

− 1
zr+1

0 · · · 0

w21
1
z1

· · · w2r
1
zr

0 − 1
zr+2

· · · 0

...
. . .

...
...

...
. . .

...

w(k−r)1
1
z1

· · · w(k−r)r
1
zr

0 0 · · · − 1
zk



.

From (2.23), after a series of Gaussian eliminations, the Jacobian matrix J(z) can be

converted into

J̄(z) =



ql1p1 · · · ql1pr 0 0 · · · 0

ql2p1 · · · ql2pr 0 0 · · · 0

...
. . .

...
...

...
. . .

...

qlrp1 · · · qlrpr 0 0 · · · 0

w11
1
z1

· · · w1r
1
zr

− 1
zr+1

−
r∑

j=1

w2
1j

zj
−

r∑
j=1

w2jw1j

zj
· · · −

r∑
j=1

w(k−r)jw1j

zj

w21
1
z1

· · · w2r
1
zr

−
r∑

j=1

w1jw2j

zj
− 1

zr+2
−

r∑
j=1

w2
2j

zj
· · · −

r∑
j=1

w(k−r)jw2j

zj

...
. . .

...
...

...
. . .

...

w(k−r)1
1
z1

· · · w(k−r)r
1
zr

−
r∑

j=1

w1jw(k−r)j

zj
−

r∑
j=1

w2jw(k−r)j

zj
· · · − 1

zk
−

r∑
j=1

w2
(k−r)j

zj


.
=

P1 0

P2 P3

 ,

where P1 ∈ Rr×r, P2 ∈ R(k−r)×r, and P3 ∈ R(k−r)×(k−r). Notice the following two

25



facts: (i) rank(P1) = r; and (ii)

P3 = −



w11√
z1

w12√
z2

· · · w1r√
zr

w21√
z1

w22√
z2

· · · w2r√
zr

...
...

. . .
...

w(k−r)1√
z1

w(k−r)2√
z2

· · · w(k−r)r√
zr





w11√
z1

w12√
z2

· · · w1r√
zr

w21√
z1

w22√
z2

· · · w2r√
zr

...
...

. . .
...

w(k−r)1√
z1

w(k−r)2√
z2

· · · w(k−r)r√
zr



T

−



1
zr+1

0 · · · 0

0 1
zr+2

· · · 0

...
...

. . .
...

0 0 · · · 1
zk


.

Therefore, J̄(z) and J(z) are invertible if z (∈ Rk) > 0.

Now let F (z) = 0 be system (2.29). From previous discussions, we know (i)

∀x ∈ Ω1(x
0) ∩ U(x∗, δ1), z = (xp1 , . . . , xpr , xpr+1 , . . . , xpk)

T is a solution of F (z) = 0,

in particular, z∗ = (x∗
p1
, . . . , x∗

pr , x
∗
pr+1

, . . . , x∗
pk
)T is also a solution of F (z) = 0; (ii)

∂F
∂z

is invertible ∀z (∈ Rk) > 0; and (iii) z∗ > 0. By Lemma 1.6, z = z∗ must be an

isolated point satisfying F (z) = 0. Therefore, there exists a δ2 > 0 (δ2 ≤ δ1) such

that for any x ∈ Ω1(x
0)∩U(x∗, δ2), z = (xp1 , . . . , xpr , xpr+1 , . . . , xpk)

T is a solution of

system (2.29) if and only if x = x∗, thus there is only one point x∗ ∈ Ω1(x
0)∩U(x∗, δ2),

i.e., x∗ is an isolated point of Ω1(x
0). But Ω1(x

0) is connected, thus there is only one

point x∗ in Ω1(x
0), the proof is complete.

Theorem 2.9 ensures the strong convergence of the solution x(t) of ODE (2.9)

as t → +∞. This along with Theorem 2.7 guarantees the limit point is an optimal

solution for problem (P2). It should be mentioned that the limit point depends on

the starting point x0 in general.

26



2.3 An Affine Scaling Continuous Method for Box

Constrained CQP

Based on the active set strategies, some algorithms for solving box constrained prob-

lems were presented [26, 32]. By solving a series of equality constrained quadratic

optimization problems, finally the optimal solution of the original problem is ob-

tained. But for large scale problems, there are two main disadvantages, one is that

some constraints are added (dropped) at a time to (from) the working set, which

leading to an excessive number of the iterations. The other disadvantage is that the

exact minimizer on the current working face is required before adding (dropping)

constraints [27]. In order to avoid these disadvantages, some gradient projection

based algorithms were proposed [5, 41, 53, 54, 57, 77]. An algorithm that combines

active set strategy with the gradient projection method was presented in [27]. Xia

and Wang presented a projected dynamic system to solve the convex programming

with box constraints. In order to ensure the convergence, where the strict convexity

of objective function is required [77].

The presentation of this section is similar to the one in Section 2.2 but in a more

compact format. In particular, many similar proofs will be omitted.

The KKT system of problem (P3) is


Qx+ c = z − y, 0 ≤ x ≤ e,

(In −X)y = 0, y ≥ 0,

Xz = 0, z ≥ 0,

(2.30)

where y, z ∈ Rn.

In ODE system (2.9), X plays the role of a barrier wall such that the whole

solution trajectory stays in the nonnegative region. Following the same idea, for

problem (P3), we consider the following ODE, which shares the similar properties of
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ODE (2.9) 
dx(t)
dt

= −X(In −X)(Qx+ c),

x(0) = x0, 0 < x0 < e.
(2.31)

Theorem 2.10. Let x(t) be the solution of the system (2.31) with the maximal exis-

tence interval [0, β). Then 0 < x(t) < e for any t ∈ [0, β).

Proof. We will prove that 0 < x(t) < e for any t ∈ [0, β) by contradiction. In other

words, rank(X(In −X)) ≡ n for any t ∈ [0, β).

Suppose that there exists a t∗ ∈ [0, β) such that rank(X∗(In−X∗)) ≤ n−1. Since

xi(t) is continuous on t, let t∗ be the minimum t such that rank(X∗(In−X∗)) ≤ n−1,

i.e., 0 < x(t) < e for all 0 ≤ t < t∗. Thus there at least exists some j ∈ {1, . . . , n}

such that xi(t
∗) = 1 or xi(t

∗) = 0. First suppose xi(t
∗) = 1, and

rank(X(t)(In −X(t))) = n, ∀t ∈ [0, t∗).

Let

M = sup{∥X(Qx+ c)∥+ 1 : 0 ≤ x ≤ e}, (2.32)

and

t1 = max{0, t∗ − 1

2M
}.

Further, let t̄ be the time satisfying

xi(t̄) = min
t∈[t1,t∗]

xi(t) < 1.

Notice that

dx(t)

dt
= −(In −X)X(Qx+ c),

we have

xi(t
∗)− xi(t) = −

∫ t∗

t

(1− xi(τ))e
T
i X(Qx+ c)dτ.
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For any t ∈ [t1, t
∗], 0 < xi(t) < 1, since xi(t

∗) = 1, we have

1− xi(t) ≤ M |t∗ − t|(1− xi(t̄))

≤ 1

2
(1− xi(t̄)).

Since t is arbitrary in [t1, t
∗], taking t = t̄ in the above inequality, we have

1− xi(t̄) ≤
1

2
(1− xi(t̄)).

Thus, xi(t̄) = 1, which is a contradiction with the definition of xi(t̄), xi(t
∗) = 1 is

rejected. Similarly, xi(t
∗) = 0 is rejected for some i and some t∗ ∈ [0, β).

Thus, the matrix X(In −X) plays a role of a box barrier such that the solution

trajectory of the system (2.31) will stay in the box constrained region forever. By

Lemma 1.1, β = +∞.

Corollary 2.3. There exists a unique solution x(t) for ODE (2.31) on [0, +∞), and

0 < x(t) < e for any t ∈ [0, +∞).

Theorem 2.11. Let x(t) be a solution of the system (2.31) on [0, +∞). Then

lim
t→+∞

X(In −X)(Qx+ c) = 0.

Theorem 2.12. (i) If x is an optimal solution of problem (P3) and 0 < x < e,

then X(In − X)(Qx + c) = 0.(ii) Let x(t) be the solution of the system (2.31), If

X(In−X)(Qx+ c)|x=x0 = 0, then x(t) ≡ x0 for all t ≥ 0. Moreover, x0 is an optimal

solution of the problem (P3).

Theorem 2.13. Let x(t) be the solution of ODE (2.31), if X(In−X)(Qx+c)|t=0 ̸= 0,

then X(In −X)(Qx+ c) ̸= 0 for any t ≥ 0.

Similar to (2.14), define

u(x) = Qx+ c. (2.33)
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Let x(t) be the solution of the system (2.31). Define limit set

Ω2(x
0) = {y ∈ Rn | is a cluster point of x(t) of ODE (2.31)}. (2.34)

Theorem 2.3 implies 0 < x(t) < e for any t ≥ 0, thus the limit set Ω2(x
0) is

nonempty, compact, connected [15]. For some given x̄ ∈ Ω2(x
0), let

ū = Qx̄+ c. (2.35)

By the monotonicity of q(x(t)) and Theorem 2.11, we have the following corollary.

Corollary 2.4. (i) q(x) = q(x̄) ∀x ∈ Ω2(x
0); (ii) X(In −X)u(x) = 0 ∀x ∈ Ω2(x

0),

where u(x) is defined in (2.33).

Let J̄ = {j|ūj = 0, j ∈ {1, . . . , n}} and J̄c = {1, . . . , n} \ J̄ . Then

ūj ̸= 0, for any j ∈ J̄c.

Together with the equality X̄(In − X̄)ū = 0, further we partition J̄ c by

J̄ c
l = {j|x̄j = 0, j ∈ J̄ c}, J̄ c

u = {j|x̄j = 1, j ∈ J̄c}. (2.36)

Define set

Λ̄2 = {x ∈ Rn | 0 ≤ x ≤ e, xJ̄c
l
= 0, xJ̄c

u
= 1, q(x) = q(x̄)}, (2.37)

clearly Λ̄2 is closed. Λ̄2 is nonempty since x̄ ∈ Λ̄2. The following results are similar

to those in Section 2.2.

Theorem 2.14. Λ̄2 is convex.

Proof. Let x be an arbitrary point in the convex hull co(Λ̄2), i.e., x is a positive linear

convex combination of some points in Λ̄2, thus xJ̄c
l
=0, xJ̄c

u
=1, 0 ≤ x ≤ e. Based on

the convexity of q(x), the following inequality holds

q(x) ≤ q(x̄). (2.38)
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On the other hand, let ∆x = x− x̄, then (∆x)J̄c = 0, ūT (∆x) = 0, again by the

convexity of q(x), we have

q(x) ≥ q(x̄) +∇q(x̄)T (∆x)

= q(x̄) + ūT (∆x)

= q(x̄),

this and (2.38) imply q(x) = q(x̄) for all x ∈ co(Λ̄2), thus x ∈ Λ̄2, hence Λ̄2 in

convex.

By Lemma 1.4 and Theorem 2.14, the following theorem is straightforward.

Theorem 2.15. u(x) = ū for all x ∈ Λ̄2.

Theorem 2.16. Ω2(x
0) ⊆ Λ̄2.

Proof. If J̄c
0 is empty, Λ̄2 = {x ∈ Rn | 0 ≤ x ≤ e, q(x) = q(x̄)}. From Corollary 2.4

(i), the result holds clearly. Now we consider the case that J̄ c
0 is nonempty. Suppose

there exists a point x̂ ∈ Ω2(x
0) but x̂ /∈ Λ̄2. Notice that Λ̄2 lies inside the bounded

set {x ∈ Rn | 0 ≤ x ≤ e}, so Λ̄2 is compact (since Λ̄2 is closed). Thus u(x) in (2.33)

is uniformly continuous over Λ̄2. Theorem 2.15 implies there exists some δ0 > 0 such

that

|uj(x)| ≥ |ūj|/2 > 0 ∀ j ∈ J̄ c
0 , ∀ x ∈ U(Λ̄2, δ0), (2.39)

where U(Λ̄2, δ0) is the δ0-neighborhood of set Λ̄2. Since x̂ /∈ Λ̄2 and Λ̄2 is compact,

there exists some δ1 ∈ (0, δ0]∩(0, 0.1] such that x̂ /∈ U(Λ̄2, δ1). Notice x̄ ∈ Ω2(x
0)∩Λ̄2

and x̂ ∈ Ω2(x
0) but x̂ /∈ U(Λ̄2, δ1), by the connectivity of Ω2(x

0), there must exist

some x̃ ∈ Ω2(x
0) ∩ U(Λ̄2, δ1) but x̃ /∈ Λ̄2. x̃ ∈ Ω2(x

0) and Corollary 2.4 (i) imply

0 ≤ x̃ ≤ e, q(x̃) = q(x̄).

Since x̃ /∈ Λ̄2, x̃ ∈ Ω2(x
0), and at least one of the sets J̄c

l and J̄ c
u is nonempty, then

at least one of the following two cases will occur
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(a) x̃J̄c
l
= 0 is not true, i.e. there exists some j1 ∈ J̄ c

l such that x̃j1 > 0; or

(b) x̃J̄c
u
= eJ̄c

u
is not true, i.e. there exists some j2 ∈ J̄ c

u such that x̃j2 < 1.

If case (a) arises, since x̃ ∈ Ω2(x
0)∩U(Λ̄2, δ1) and δ1 ≤ 0.1, then x̃j1 < 0.1. Thus,

0 < x̃j1 < 0.1.

If case (b) arises, since x̃ ∈ Ω2(x
0)∩U(Λ̄2, δ1) and δ1 ≤ 0.1, then x̃j2 > 0.9. Thus,

0.9 < x̃j2 < 1.

In either case, there exists a j (j1 or j2) ∈ J̄c
0 such that x̃j(1 − x̃j) ̸= 0. (2.39)

and δ1 ≤ δ0 ensure |uj(x̃)| > 0, thus x̃j(1 − x̃j)uj(x̃) ̸= 0. This contracts with the

fact X̃(In − X̃)u(x̃) = 0 (Corollary 2.4 (ii)) since x̃ ∈ Ω2(x
0), thus the proof is

complete.

Theorem 2.17. If x(t) is the solution of ODE (2.31), then lim
t→+∞

(Qx+ c) = ū, and

ūJ̄c
l
> 0 if J̄ c

l is nonempty, ūJ̄c
u
< 0 if J̄c

u is nonempty.

Proof. By the continuity of s(x(t)), compactness of the Λ̄2 and Theorem 2.16 and

Theorem 2.17, clearly

lim
t→+∞

(Qx+ c) = ū.

If J̄ c
l is nonempty, by the definition of J̄ c

l , ūj ̸= 0 for any j ∈ J̄ c
l . Suppose there

exists some j̄ ∈ J̄ c
l such that ūj̄ < 0. Since u(x(t)) is continuous on [0, ∞), there

exists some tK such that uj̄(x(t)) < 0 for all t ≥ tK . For any cluster point x̄ ∈ Ω2(x
0),

j̄ ∈ J̄ c
l implies x̄j̄ = 0. Notice that

dx(t)

dt
= −X(In −X)(Qx+ c),

and 0 < x(t) < e for any t ∈ [0, ∞). Thus
dxj̄(t)

dt
≥ 0 , so xj̄(t) ≥ xj̄(tK) > 0 for all

t ≥ tK , which contradicts with x̄j̄ = 0.

Similarly, we can prove s̄J̄c
u
< 0 if J̄ c

u is nonempty.
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Theorem 2.18. Any x ∈ Ω2(x
0) is an optimal solution for problem (P3).

Proof. For any x ∈ Ω2(x
0), we have

Qx+ c = Qx̄+ c = ū

and

X(In −X)ū = 0.

By Theorem 2.17, together with the definition of J̄ , J̄ c
u, J̄

c
l , for any i ∈ {1, . . . , n}, we

have

ūi = 0, if 0 < xi < 1;

ūi ≤ 0, if xi = 1;

ūi ≥ 0, if xi = 0.

Let us define z, y ∈ Rn by
zi = 0, yi = 0, if 0 < xi < 1;

zi = 0, yi = −ūi, if xi = 1;

zi = ūi, yi = 0, if xi = 0.

(2.40)

Thus the following relations hold
Qx+ c = z − y, 0 ≤ x ≤ e,

(In −X)y = 0, y ≥ 0,

Xz = 0, z ≥ 0,

which are exactly the KKT conditions (2.30) of problem (P3), thus the optimality of

x is obvious.

Theorem 2.19. The limit set Ω2(x
0) only contains a single point.

Proof. From previous theorems in this section, u(x) = Qx+c is a constant on Ω2(x
0).

Let u∗ denote this constant. Assume x∗ ∈ Ω2(x
0), and the rank of matrix X∗(In−X∗)
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is maximum for all x ∈ Ω2(x
0), the index set {1, . . . , n} can be divided into three

disjoint sets B, N1, N2 such that

0 < x∗
i < 1, i ∈ B,

x∗
i = 0, i ∈ N1,

x∗
i = 1, i ∈ N2,

further, let N = N1 ∪N2. If B = ∅, we can conclude there exist at most 2n points in

Ω2(x
0), since Ω2(x

0) is connected, there is only one point in Ω2(x
0), the convergence

of x(t) is clear. So we suppose that B is nonempty, without loss of generality, let

B = {1, . . . , k} and N = {k + 1, . . . , n}.

Based on this partition, for any x ∈ Rn, it can be partitioned by x =

xB

xN

.

Similarly, we can partition s =

sB

sN

, c =

cB

cN

, e =

eB

eN

 respectively, where

xB, sB, cB, eB ∈ Rk, and xN , sN , cN , eN ∈ R(n−k).

Let δ1 =
1
2
min{min

i∈B
{x∗

i },min
i∈B

{1− x∗
i }}. From the definition of x∗, we know

0 < xB < eB, xN = x∗
N , ∀x ∈ Ω2(x

0) ∩ U(x∗, δ1). (2.41)

Next we will prove that x∗ is an isolated point of Ω2(x
0).

For any point x ∈ Ω2(x
0) ∩ U(x∗, δ1), the following equality holds

Qx+ c = Qx∗ + c
.
= u∗. (2.42)

The above equality can be rewritten as

Q11x1 + · · ·+Q1kxk +Q1(k+1)xk+1 + · · ·+Q1nxn = u∗
1 − c1

Q21x1 + · · ·+Q2kxk +Q2(k+1)xk+1 + · · ·+Q2nxn = u∗
2 − c2

...

Qn1x1 + · · ·+Qnkxk +Qn(k+1)xk+1 + · · ·+Qnnxn = u∗
n − cn

(2.43)
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For simplicity of our discussion, denote

Q = [q1, q2, . . . , qn], b = u∗ − c−
∑
i∈N

x∗
i qi = u∗ − c−

∑
i∈N2

qi.

Since (Ω2(x
0) ∩ U(x∗, δ1)) ⊆ Ω2(x

0), we have

x1q1 + · · ·+ xkqk = b, for any x ∈ Ω2(x
0) ∩ U(x∗, δ1). (2.44)

thus, rank[q1, q2, . . . , qk] = rank[q1, q2, . . . , qk, b].

If rank[q1, q2, . . . , qk] = k, b will be expressed uniquely as a linear combination of

q1, q2, . . . , qk, thus except for x∗, there is no x in Ω2(x
0) ∩ U(x∗, δ) such that (2.44)

holds. In other words, x∗ is an isolated point of Ω2(x
0).

If rank[q1, q2, . . . , qk] = r < k, the case that r = 0 is not under our consideration.

If r = 0, then we have

dxi(t)

dt
= −cixi(1− xi), i = 1, . . . , k.

From Theorem 2.11, lim
t→+∞

dxi(t)
dt

= 0, thus there are two cases

(a) ci = 0 ⇒ xi(t) ≡ x0
i , thus the convergence is clear;

(b) ci ̸= 0 ⇒ x∗
i = 0 or x∗

i = 1, which is a contradiction with the assumption that

0 < x∗
i < 1.

So we only consider the case that 1 ≤ r < k, and assume {qp1 , qp2 , . . . , qpr} is an

maximum linearly independent group of {q1, q2, . . . , qk}, and {qpr+1 , qpr+2 , . . . , qpk} =

{q1, q2, . . . , qk} \ {qp1 , qp2 , . . . , qpr}. Thus there exists a matrix W = (wij) ∈ R(k−r)×r

such that

qpr+i
=

r∑
j=1

wijqpj , i = 1, . . . , k − r. (2.45)
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We consider the following sub-system of (2.43)

qTp1x = (u∗ − c)p1
...

qTprx = (u∗ − c)pr

qTpr+1
x = (u∗ − c)pr+1

...

qTpkx = (u∗ − c)pk

(2.46)

Since x∗ is a solution of (2.46), the system (2.46) is consistent. By (2.45), we have

(u∗ − c)pr+i
=

r∑
j=1

wij(u
∗ − c)pj , i = 1, . . . , k − r. (2.47)

X∗(In −X∗)u∗ = 0 and 0 < x∗
B < eB imply u∗

B = 0, thus

cpr+i
=

r∑
j=1

wijcpj , i = 1, . . . , k − r. (2.48)

Let x(t) be the solution of ODE (2.31). In order to overcome the difficulty caused

by the degeneracy in linear equations (2.46), define

yi(t) =
r∑

j=1

wij ln
xpj(t)

1− xpj(t)
− ln

xpr+i
(t)

1− xpr+i

, i = 1, . . . , k − r. (2.49)

Since 0 < x(t) < e for any t ∈ [0, +∞), yi(t) is well defined for any i ∈ {1, . . . , k−r}.

Notice that

dx(t)

dt
= −X(In −X)(Qx+ c),

together with (2.45) and (2.48), we have

dyi(t)

dt
=

r∑
j=1

wij

dxpj (t)

dt

xpj(1− xpj)
−

dxpr+i (t)

dt

xpr+i
(1− xpr+i

)

= (
r∑

j=1

wijq
T
pj
− qTpr+i

)x+
r∑

j=1

wijcpj − cpr+i

≡ 0, i = 1, . . . , k − r.

Thus there exist k − r constants c̄i (i = 1, . . . , k − r) such that

yi(t) ≡ c̄i, i = 1, . . . , k − r, t ∈ [0, +∞), (2.50)
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sequentially

r∑
j=1

wij ln
xpj

1− xpj

−ln
xpr+i

1− xpr+i

≡ c̄i, i = 1, . . . , k−r, ∀x ∈ Ω2(x
0)∩U(x∗, δ1). (2.51)

Let P ∈ Rr×k be a matrix generated by choosing r linearly independent rows (say,

l1, . . . , lr) from matrix [qp1 , . . . , qpr , qpr+1 , . . . , qpk ]. Then P can be written as

P =


Ql1p1 · · · Ql1pr Ql1pr+1 · · · Ql1pk

Ql2p1 · · · Ql2pr Ql2pr+1 · · · Ql2pk

...
. . .

...
...

. . .
...

Qlrp1 · · · Qlrpr Qlrpr+1 · · · Qlrpk


By the system (2.44), we have

P



xp1

...

xpr

xpr+1

...

xpk


=



bp1
...

bpr

bpr+1

...

bpk


, ∀x ∈ Ω2(x

0) ∩ U(x∗, δ1), (2.52)

where L = {l1, . . . , lr}. Combining system (2.51) and system (2.52), for any x ∈

Ω2(x
0) ∩ U(x∗, δ1), z = (xp1 , . . . , xpr , xpr+1 , . . . , xpk) is a solution of the following

nonlinear system

Ql1p1z1 + · · ·+Ql1przr +Ql1pr+1zr+1 +Ql1pr+2zr+2 + · · ·+Ql1pkzk = bl1

Ql2p1z1 + · · ·+Ql2przr +Ql2pr+1zr+1 +Ql2pr+2zr+2 + · · ·+Ql2pkzk = bl2
...

Qlrp1z1 + · · ·+Qlrprzr +Qlrpr+1zr+1 +Qlrpr+2zr+2 + · · ·+Qlrpkzk = blr

w11 ln
z1

1−z1
+ · · ·+ w1r ln

zr
1−zr

− ln zr+1

1−zr+1
− 0− 0− · · · − 0 = c̄1

w21 ln
z1

1−z1
+ · · ·+ w2r ln

zr
1−zr

− 0− ln zr+2

1−zr+2
− 0− · · · − 0 = c̄2

...

w(k−r)1 ln
z1

1−z1
+ · · ·+ w(k−r)r ln

zr
1−zr

− 0− 0− 0− · · · − ln zk
1−zk

= c̄k−r

(2.53)
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The Jacobian matrix of system (2.53) is

J(z) =



Ql1p1 · · · Ql1pr Ql1pr+1 Ql1pr+2 · · · Ql1pk

Ql2p1 · · · Ql2pr Ql2pr+1 Ql2pr+2 · · · Ql2pk

...
. . .

...
...

...
. . .

...

Qlrp1 · · · Qlrpr Qlrpr+1 Qlrpr+2 · · · Qlrpk

w11

z1(1−z1)
· · · w1r

zr(1−zr)
− 1

zr+1(1−zr+1)
0 · · · 0

w21

z1(1−z1)
· · · w2r

zr(1−zr)
0 − 1

zr+2(1−zr+2)
· · · 0

...
. . .

...
...

...
. . .

...

w(k−r)1

z1(1−z1)
· · · w(k−r)r

zr(1−zr)
0 0 · · · − 1

zk(1−zk)



.

From (2.45), after a series of Gaussian operations, the Jacobian matrix J(z) can be

converted into

J̄(z) =



Ql1p1
··· Ql1pr

0 0 ··· 0

Ql2p1
··· Ql2pr

0 0 ··· 0

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
Qlrp1

··· Qlrpr
0 0 ··· 0

w11
z1(1−z1)

··· w1r
zr(1−zr)

−1
zr+1(1−zr+1)

−
r∑

j=1

w2
1j

zj(1−zj)
−

r∑
j=1

w2jw1j
zj(1−zj)

··· −
r∑

j=1

w(k−r)jw1j
zj(1−zj)

w21
z1(1−z1)

··· w2r
zr(1−zr)

−
r∑

j=1

w1jw2j
zj(1−zj)

−1
zr+2(1−zr+2)

−
r∑

j=1

w2
2j

zj(1−zj)
··· −

r∑
j=1

w(k−r)jw2j
zj(1−zj)

.

.

.
. .
.

.

.

.

.

.

.

.

.

.
.
. .

.

.

.
w(k−r)1
z1(1−z1)

···
w(k−r)r
zr(1−zr)

−
r∑

j=1

w1jw(k−r)j
zj(1−zj)

−
r∑

j=1

w2jw(k−r)j
zj(1−zj)

··· −1
zk(1−zk)

−
r∑

j=1

w2
(k−r)j

zj(1−zj)


.
=

Q1 0

Q2 Q3

 .

where Q1 ∈ Rr×r, Q2 ∈ R(k−r)×r, and Q3 ∈ R(k−r)×(k−r). Based on the following two

facts, J̄(z) (or J(z)) is invertible if 0 < z < eB,

(1) rank(Q1) = r, and
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(2)

Q3 = −



w11√
z1(1−z1)

w12√
z2(1−z2)

· · · w1r√
zr(1−zr)

w21√
z1(1−z1)

w22√
z2(1−z2)

· · · w2r√
zr(1−zr)

...
...

. . .
...

w(k−r)1√
z1(1−z1)

w(k−r)2√
z2(1−z2)

· · · w(k−r)r√
zr(1−zr)





w11√
z1(1−z1)

w12√
z2(1−z2)

· · · w1r√
zr(1−zr)

w21√
z1(1−z1)

w22√
z2(1−z2)

· · · w2r√
zr(1−zr)

...
...

. . .
...

w(k−r)1√
z1(1−z1)

w(k−r)2√
z2(1−z2)

· · · w(k−r)r√
zr(1−zr)



T

−



1
zr+1(1−zr+1)

0 · · · 0

0 1
zr+2(1−zr+2)

· · · 0

...
...

. . .
...

0 0 · · · 1
zk(1−zk)


.

Now let G(z) = 0 be system (2.53). From previous discussions, we know (i)

∀x ∈ Ω2(x
0) ∩ U(x∗, δ1), z = (xp1 , . . . , xpr , xpr+1 , . . . , xpk)

T is a solution of G(z) = 0,

in particular, z∗ = (x∗
p1
, . . . , x∗

pr , x
∗
pr+1

, . . . , x∗
pk
)T is also a solution of G(z) = 0; (ii)

∂G
∂z

is invertible ∀z ∈ Rk and 0 < z < eB; and (iii) 0 < z∗ < eB. By Lemma

1.6, z = z∗ must be an isolated point satisfying G(z) = 0. Therefore, there exists

a δ2 > 0 (δ2 ≤ δ1) such that for any x ∈ Ω2(x
0) ∩ U(x∗, δ2), z = (xp1 , . . . , xpr ,

xpr+1 , . . . , xpk)
T is a solution of system (2.53) if and only if x = x∗, thus there is only

one point x∗ ∈ Ω2(x
0) ∩ U(x∗, δ2), i.e., x

∗ is an isolated point of Ω2(x
0). But Ω2(x

0)

is connected, thus there is only one point x∗ in Ω2(x
0), the proof is complete.

2.4 Numerical Illustration

In order to illustrate the behaviors of ODEs (2.9) and (2.31), four small examples

(two for each ODE) are constructed to depict the continuous trajectories. In addition,

a set of ten randomly generated (Q, c)s are tested in Matlab with Q = AAT , A = rand(n, r), r = 50 + round(rand(1) ∗ (n− 50));

c = α ∗ rand(n, 1)− e, α > 0 is a constant.
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The ODE solver used is ODE23. All of our tests were run in Matlab platform on

a PC with 2.66 GHz processor. In our numerical tests, the conditional numbers of

some Q’s are very large, around 1020 for n = 2000.

2.4.1 The Performance of the Continuous Method for Non-

negativity Constrained CQP

Example 2.1.

min 1
2
(x2

1 + 2x1x2 + 2x1x3 + x2
2 + 2x2x3 + 3x2

3)− 1
2
x1 − x2 + x3

s.t. x1, x2, x3 ≥ 0.

The unique optimal solution is x∗ = (0, 1, 0)T .

Example 2.2.

min 1
2
(x2

1 + 2x1x2 + 2x1x3 + x2
2 + 2x2x3 + 3x2

3)− x1 − x2 + x3

s.t. x1, x2, x3 ≥ 0.

The optimal solution is x∗ = (ξ, 1− ξ, 0)T , where ξ ∈ [0, 1].

For three different random initial points, the solution trajectories for the above

two examples are displayed in Figure 2.1. It is easy to see that all the trajectories

will tend to some optimal solution, and the limit point depends on the initial point

if there are more than one solutions.

The initial points for the ten randomly generated (Q, c)s are set to x0 = (1, · · · , 1)T .

The stopping criterion in our test is |dx(t)
dt

|∞ ≤ ϵ for some small ϵ > 0, which is guar-

anteed by Theorem 2.2 and dq(x)
dt

= −(Qx+c)TX(Qx+c) ∝
(
|dx(t)

dt
|∞

)2
. For ϵ = 10−4

and ϵ = 10−5, the numerical results with α = 5 are reported in Table 2.1 and Table

2.2 respectively, where n represents the problem size (n) and CPU(s) represents the

average time (run 100 times) required for solving each problem.
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Figure 2.1: The limiting behavior of solution trajectories of ODE (2.9) starting from

three different initial conditions. Upper: The solution trajectories for Example 2.1.

Lower: The solution trajectories for Example 2.2.
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Table 2.1: The performance of ODE (2.9) (ϵ = 10−4)

n 200 400 600 800 1000 1200 1400 1600 1800 2000

CPU(s) 0.02 0.03 0.09 0.23 0.33 0.44 0.51 0.67 0.97 1.01

Table 2.2: The performance of ODE (2.9) (ϵ = 10−5)

n 200 400 600 800 1000 1200 1400 1600 1800 2000

CPU(s) 0.04 0.08 0.19 0.51 0.80 0.90 0.92 1.14 1.26 1.61

2.4.2 The Performance of the Continuous Method for Box

Constrained CQP

Example 2.3.

min 1
2
x2
1 + x2

2 − 2x1 − 3x2 + 5x3

s.t. 0 ≤ x1, x2, x3 ≤ 1.

The unique optimal solution is x∗ = (1, 1, 0)T .

Example 2.4.

min 1
2
(x2

1 + 2x1x2 + 2x1x3 + x2
2 + 2x2x3)− 3

2
x1 − 3

2
x2 + 5x3

s.t. 0 ≤ x1, x2, x3 ≤ 1.

The optimal solution is x∗ = (ξ, 1.5− ξ, 0)T , where ξ ∈ [0.5, 1].

For three different random initial points, the solution trajectories for the above

two examples are displayed in Figure 2.2.

The initial points for the ten randomly generated (Q, c)s are set to x0 = (1/2,

· · · , 1/2)T . Similarly, for ϵ = 10−4 and ϵ = 10−5, the numerical results with α = 5

are reported in Table 2.3 and Table 2.4 respectively, where n represents the problem

size (n) and CPU(s) represents the average time (run 100 times) required for solving

each problem.
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Figure 2.2: The limiting behavior of solution trajectories of ODE (2.31) starting

from three different initial conditions. Upper: The solution trajectories for Example

2.3. Lower: The solution trajectories for Example 2.4.
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Table 2.3: The performance of ODE (2.31) (ϵ = 10−4)

n 200 400 600 800 1000 1200 1400 1600 1800 2000

CPU(s) 0.02 0.04 0.08 0.24 0.28 0.50 0.57 0.64 0.81 1.00

Table 2.4: The performance of ODE (2.31) (ϵ = 10−5)

n 200 400 600 800 1000 1200 1400 1600 1800 2000

CPU(s) 0.05 0.09 0.19 0.53 0.61 0.83 1.04 0.84 1.41 1.97

From our preliminary results in Table 2.1, Table 2.2, Table 2.3 and Table 2.4, it

can be observed that the performance of ODE (2.31) is more sensitive to the stopping

criterion than that of ODE (2.9).

2.5 Concluding Remarks

Two interior point affine scaling continuous method models are introduced for non-

negative and box constrained CQP respectively. The essence of each interior point

affine scaling continuous method is an ODE system, whose equilibrium points corre-

spond to the optimal solutions for the underlying optimization problem. A thorough

study on the two continuous trajectories (one for each problem) is provided with many

important theoretical results. In particular, strong convergence for both continuous

trajectories is proved.

To extend the ODE (2.9) for problem (P2), the following family of ODEs can be

also used 
dx(t)
dt

= −Xγ(Qx+ c),

x(0) = x0 > 0,
(2.54)

where γ ≥ 1. Similar theoretical results obtained in Section 2.2 should also hold for

ODE (2.54).
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For general box constrained CQP (P1) with l < u, if the optimal solution set is

bounded, the following ODE system can be used
dx(t)
dt

= −g(x) ◦ (Qx+ c),

x(0) = x0, l < x0 < u,
(2.55)

where ◦ denotes the Hadamard product of two vectors, g : Rn → Rn is defined as

follows

gi(x) =



(ui − xi) if li = −∞, ui < +∞,

(ui − xi)(xi − li) if −∞ < li, ui < +∞,

(xi − li) if −∞ < li, ui = +∞,

1 if li = −∞, ui = +∞,

i = 1, . . . , n. Similarly, the theoretical results obtained in Section 2.3 should also

hold for ODE (2.55).
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Chapter 3

First-order Affine Scaling

Continuous Trajectory for

Standard CQP

3.1 Introduction

In this chapter we consider the following standard convex quadratic programming

min q(x) = 1
2
xTQx+ cTx

s.t. Ax = b, x ≥ 0,
(P4)

where Q = (qij)n×n ∈ Rn×n, A = (aij)m×n ∈ Rm×n, c ∈ Rn, b ∈ Rm. We also assume

that Q is symmetric and positive semi-definite, in addition A has full row rank.

For later discussion, the following two regions are defined

P+ = {x ∈ Rn|Ax = b, x ≥ 0}, P++ = {x ∈ Rn|Ax = b, x > 0},

where P++ is called the relative interior of P+. Since interior point method is con-

sidered, we assume P++ is nonempty.

For problem (P4), the affine scaling algorithm was first proposed by Dikin in

1967. Due to its beautiful mathematical structure and high performance, many

researchers turned to study the convergence of the affine scaling algorithm. For linear

programming, please see [21, 59, 66, 68], for the continuous affine scaling trajectories,

please see [4, 7, 45, 50] .
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In Chapter 2, we introduced the idea of affine scaling algorithm briefly. Let’s

recall the first-order and second-order affine scaling algorithms for problem (P4).

Their search directions are obtained by minimizing a linear or quadratic function

over the intersection of the null space of A with the ellipsoid centered at the current

interior point [20, 33, 51, 63, 67, 82]. For some x ∈ P++, the linear and quadratic

optimization subproblems can be stated as follows

min
d

(Qx+ c)Td

s.t. Ad = 0,

∥X−1d∥2 ≤ β2 < 1,

(P5)

min
d

(Qx+ c)Td+ 1
2
dTQd

s.t. Ad = 0,

∥X−1d∥2 ≤ β2 < 1,

(P6)

where β > 0 is constant.

It is not hard to compute the optimal solutions of problems (P5) and (P6), i.e., the

first-order and second-order affine scaling directions, which are expressed as follows

d1 = −βXPAXX(Qx+ c)

∥PAXX(Qx+ c)∥2
, (3.1)

d2 = −βXPAXX[Q(x+ d2) + c]

∥PAXX[Q(x+ d2) + c]∥2
, (3.2)

where PAX = In −XAT (AX2AT )−1AX. It should be noted that formula (3.2) is an

implicit scheme.

For the discrete methods, without the nondegeneracy assumption, Sun [63], Mon-

teiro and Tsuchiya [51] proved the convergence of the second-order affine scaling

algorithm. Compared with the second-order affine scaling algorithm, the structure of

the first-order affine scaling algorithm is simpler, but the convergence has not been

solved so far. Monteiro and Tsuchiya [51] pointed out the convergence of the first-

order affine scaling algorithm had been proved by Gonzaga and Carlos in 1990. But
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in later version ([33] in 2002), Gonzaga and Carlos only gave weak convergence under

primal nondegeneracy assumption and boundedness assumption of the optimal solu-

tion set. Under the same assumptions, Tseng, Bomze and Schachinger discussed the

convergence of the generalized first-order affine scaling algorithm with Armijo-type

step rule in [67], where the search direction is given by

dγ = −XλPAXλXλ(Qx+ c), (3.3)

λ > 0 is constant. For any λ ∈ (0, 1), they proved the convergence.

Especially, if λ = 1
2
, A = (1, . . . , 1), b = 1 and c = 0, the continuous algorithm

induced by the direction dγ reduces to the replicator dynamics. By constructing

proper Lyapunov potential function, Losert and Akin proved the convergence of the

continuous trajectory even though Q is not positive semi-definite [43].

In this chapter we consider the continuous trajectory determined by the following

ODE system

dx

dt
= −XPAXX(Qx+ c), x(0) = x0 ∈ P++. (3.4)

The rest of this chapter is organized as follows. In Section 3.2, to ensure that the

ODE (3.4) is well defined, we give two standard assumptions, i.e., boundedness of the

optimal solution set of problem (P4) and nondegeneracy of the constrained region.

Based on a special logarithmic barrier function optimization problem, we discuss the

relationship between the centering direction and the affine scaling direction. For the

affine scaling algorithm, the convergence proof methods for linear programming can-

not be easily generalized to quadratic programming. In Section 3.3, a thorough study

on the continuous trajectory determined by ODE system (3.4) will be investigated.

In Section 3.4, with the help of dual estimate, the optimality of any accumulation

point is proved. Moreover, the convergence of the dual estimate is obtained. In Sec-

tion 3.5, the strong convergence of the continuous trajectory is proved. Finally, some

concluding remarks are drawn in Section 3.6.
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3.2 Central Path and Affine Scaling Direction

In this section, based on a logarithmic barrier function optimization problem, in the

sense of continuity we discuss the relationship between the centering direction and

the affine scaling direction briefly. First, we make the following two assumptions.

Assumption 3.1. The optimal solution set of problem (P4) is bounded.

Assumption 3.2. For any x ∈ P+, AX2AT is nonsingular, i.e., the columns of A

corresponding to index set {j | xj ̸= 0, j ∈ {1, . . . , n}} have rank m.

Assumption 3.2 is called the primal nondegeneracy assumption. From Lemma 1.3

(or Lemma 2.1 in [52]), the following lemma is straightforward.

Lemma 3.1. Assumption 3.1 holds if and only if for any x̄ ∈ P+, the level set

{x | x ∈ P+, q(x) ≤ q(x̄)} is bounded.

Theorem 3.1. Under Assumption 3.2, (AX2AT )−1 ∈ C1 on P+.

Proof. If Assumption 3.2 holds, then for any x ∈ P+, (AX2AT )−1 exists, and (AX2AT )−1

is continuous on P+. The following equality is straightforward

(AX2AT )(AX2AT )−1 = Im. (3.5)

For any i ∈ {1, . . . , n}, taking the partial derivative with respect to xi in the equality

(3.5), we have

2xi(Aeie
T
i A

T )(AX2AT )−1 + (AX2AT )
∂(AX2AT )−1

∂xi

= 0,

consequently

∂(AX2AT )−1

∂xi

= −2xi(AX
2AT )−1(Aeie

T
i A

T )(AX2AT )−1. (3.6)

Thus the proof is complete.
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Next we discuss the relationship between central path and affine scaling direction.

Considering the following optimization problem

min
x

1
2
xTQx+ cTx− µ

n∑
i=1

lnxi

s.t. Ax = b, x > 0,

(P4µ)

where µ > 0 is the barrier penalty parameter. It is easy to verify that problem (P4µ)

has no more than one minimizer. For given µ, if the minimizer exists, denoted by

x(µ), then it is determined by the following KKT system
Ax = b, x > 0,

Xz = µe, z > 0,

Qx+ c− z − ATy = 0,

(3.7)

where y ∈ Rm, z ∈ Rn.

Let (x(µ), y(µ), z(µ)) be the solution of the above system (3.7). If for any µ > 0,

(x(µ), y(µ), z(µ)) exists, then we get one smooth trajectory, which is called the central

path, denoted by

{(x(µ), y(µ), z(µ)) | µ > 0}. (3.8)

Lemma 3.2. [23] Under Assumption 3.1, the central path (3.8) is well defined, and

x(µ) converges as µ → 0 to the analytic center of the optimal solution set of problem

(P4).

For more theoretical results about the central path, please see Monteiro and Zhou

[52], or Drummond and Svaiter [23]. Of course, it is very hard to get the explicit

solution (x(µ), y(µ), z(µ)), taking the derivative with respective to µ in (3.7)
A dx

dµ
= 0,

X dz
dµ

+ Z dx
dµ

= e,

Q dx
dµ

− dz
dµ

− AT dy
dµ

= 0,

(3.9)

where Z = diag(z1, z2, . . . , zn) ∈ Rn×n. After series of calculation, we have

dx

dµ
=

1

µ2
XPAXX[Q(x− µ

dx

dµ
) + c]. (3.10)
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Let t = 1
µ
. Then (3.10) becomes

dx

dt
= −XPAXX[Q(x+ t

dx

dt
) + c]. (3.11)

For linear programming, in the continuous version, (3.11) implies that the center-

ing direction and the affine scaling direction are completely consistent. Furthermore,

if the initial point x0 falls on the central path, the affine scaling continuous trajectory

is exactly the central path, and converges to the analytic center of the optimal solu-

tion set. If the initial point is not on the central path, the affine scaling continuous

trajectory can be characterized as the solution of certain parametrized logarithmic

barrier optimization problem, i.e., one term −µpTx is added to the objective function

in problem (P4µ), thus the convergence is also guaranteed [4].

For quadratic programming, the centering direction (3.11) looks like the second-

order affine scaling direction, but it is quite different from the first-order affine scaling

direction. It should be noted that dx
dt

in (3.11) will remain unchanged if −µpTx is

added to the objective function in problem (P4µ). So far, it has not been clear

whether ODE (3.4) can be regarded as the solution of certain optimization problem

as described in linear programming.

3.3 Properties of the Continuous Trajectory

In this section, under Assumption 3.1 and Assumption 3.2, we will adopt the frame-

work of continuous methods outlined in [42] to analyze some properties of the ODE

(3.4), especially the weak convergence. For given starting point x0 in ODE (3.4), let’s

define level set

L2(x
0) = {x ∈ P+ | q(x) ≤ q(x0)}. (3.12)

It is easy to verify that XPAXX(Qx+ c) is locally Lipschitz continuous on {x ∈

Rn|x > 0}. From Lemma 1.1, there exists a unique solution x(t) of ODE (3.4) on the

interval [0, β), for some β > 0.
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Theorem 3.2. Let x(t) be the solution of ODE (3.4) with the maximal existence

interval [0, β). Then Ax(t) = b, ∀t ∈ [0, β).

Proof. Notice that for any t ∈ [0, β)

x(t) = x0 −
∫ t

t0

(XPAXX(Qx+ c)|t=τ )dτ,

thus

Ax(t) = Ax0 −
∫ t

t0

(AXPAXX(Qx+ c)|t=τ )dτ = b.

Theorem 3.3. Let x(t) be the solution of ODE (3.4) with the maximal existence

interval [0, β). Then x(t) > 0, ∀t ∈ [0, β).

Proof. We will prove x(t) > 0 for any t ∈ [0, β) by contradiction. Suppose that

there exists a t∗ ∈ (0, β), and an i ∈ {1, . . . , n} such that xi(t
∗) = 0. Since xi(t) is

continuous on t, let t∗ be the minimum t such that xi(t) = 0, or rather, xi(t
∗) = 0

and

x(t) > 0, ∀t ∈ [0, t∗). (3.13)

Theorem 3.2 implies

Ax(t) = b, ∀t ∈ [0, t∗]. (3.14)

Notice that

dq(x(t))

dt
= ∇q(x)T

dx

dt
= −(Qx+ c)TXPAXX(Qx+ c) ≤ 0, ∀t ∈ [0, t∗], (3.15)

thus q(x(t)) is nonincreasing monotonically along the trajectory x(t). (3.13) and

(3.14) together with (3.15) imply

x(t) ∈ L2(x
0), ∀t ∈ [0, t∗].
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Since AT (AX2AT )−1AX2 is continuously differentiable on L2(x
0), let

χ̄ = max
x∈L2(x0)

∥[In − AT (AX2AT )−1AX2](Qx+ c)∥+ 1, (3.16)

and

δ = max
t∈[0, t∗]

xi(t) > 0, t1 = max{0, t∗ − 1

2χ̄δ
}.

Furthermore, let t̄ be the time satisfying

xi(t̄) = max
t∈[t1, t∗]

xi(t) > 0.

From ODE (3.4), for any t ∈ [t1, t∗], we have

xi(t
∗)− xi(t) = −

∫ t∗

t

x2
i (τ)e

T
i ([In − AT (AX2AT )−1AX2](Qx+ c)|t=τ )dτ. (3.17)

It follows from (3.17) that

|xi(t
∗)− xi(t)| ≤ χ̄x2

i (t̄)(t
∗ − t).

Since xi(t
∗) = 0 and xi(t) ≥ 0 on [t1, t∗], for any t ∈ [t1, t∗], we have

xi(t) ≤ χ̄x2
i (t̄)(t

∗ − t1) ≤ δχ̄xi(t̄)(t
∗ − t1).

Taking t = t̄, then

xi(t̄) ≤ δχ̄xi(t̄)(t
∗ − t1) ≤

1

2
xi(t̄),

which is a contradiction with xi(t̄) > 0.

If [0, β) is the maximal existence interval of the solution x(t) of ODE (3.4), to-

gether with (3.15), Theorem 3.2 and Theorem 3.3 imply the whole solution trajectory

x(t) is contained in the compact set L2(x
0). By the continuation theorem (Lemma

1.1), the following theorem is straightforward.

Theorem 3.4. There exists a unique solution x(t) of ODE (3.4) on [0, +∞), and

x(t) ∈ P++ for any t ∈ [0, +∞).
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Theorem 3.5. For some x ∈ P++, x is an optimal solution for problem (P4) if and

only if PAXX(Qx+ c) = 0.

Proof. The KKT conditions for problem (P4) can be stated as follows
Ax = b, x ≥ 0,

Xz = 0, z ≥ 0,

ATy + z = Qx+ c,

(3.18)

where z ∈ Rn, and y ∈ Rm.

If x ∈ P++ is an optimal solution, there exists corresponding (y, z) such that

system (3.18) holds. Thus  z = 0,

ATy = Qx+ c.
(3.19)

It is easy to check that

PAXX(Qx+ c) = PAXXATy = 0.

The necessity is proved.

Conversely, if x ∈ P++ and

PAXX(Qx+ c) = X[In − AT (AX2AT )−1AX2](Qx+ c) = 0, (3.20)

then

[In − AT (AX2AT )−1AX2](Qx+ c) = 0.

Let z̃ = 0 ∈ Rn and ỹ = (AX2AT )−1AX2(Qx+ c). Then triple (x, ỹ, z̃) satisfies KKT

system (3.18). The sufficiency is also proved.

From the point of view of ODE (or by the proofs of Theorem 2.3 and Theorem

2.4 in Chapter 2), the following two properties are trivial.

Proposition 3.1. If x(t) is the solution of ODE (3.4) and XPAXX(Qx+ c)|t=0 ̸= 0,

then XPAXX(Qx+ c) ̸= 0 for any t ≥ 0.
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Proposition 3.2. If x(t) is the solution of ODE (3.4) and XPAXX(Qx+ c)|t=0 = 0,

then XPAXX(Qx+ c) ≡ 0 on [0, +∞).

The following theorem implies the weak convergence of ODE system (3.4).

Theorem 3.6. Let x(t) be the solution of ODE (3.4). Then lim
t→+∞

XPAXX(Qx+c) =

0.

Proof. If x(t) is the solution of ODE (3.4), then x(t) is contained in compact set

L2(x
0). Thus (3.15) implies q(x) has a finite limit as t → +∞. Obviously, (Qx +

c)TXPAXX(Qx + c) is continuously differentiable with respect to x on compact set

L2(x
0). Since x(t) is bounded on L2(x

0), there exists a constant K1 > 0 such that

|dq(x)
dt

|t=t1 −
dq(x)

dt
|t=t2 | ≤ K1∥x(t1)− x(t2)∥

= K1∥
∫ t2

t1

XPAXX(Qx+ c)dt∥

≤ K1K2|t1 − t2|,

where K2 = max
x∈L2(x0)

∥XPAXX(Qx + c)∥. Thus dq(x)
dt

is uniformly continuous on

[0, +∞), Barbalat’s Lemma 1.2 ensures that

lim
t→+∞

(Qx+ c)TXPAXX(Qx+ c) = 0.

Clearly XPAXX is positive semi-definite and bounded on L2(x
0), thus

lim
t→+∞

XPAXX(Qx+ c) = 0.

3.4 Optimality of Cluster Point

In this section, we discuss the optimality of any accumulation point of x(t), which is

the solution of the ODE (3.4), and show that the dual estimate is convergent. The

proofs of main results in this section are similar to those in [67].
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For any x ∈ P+, define dual estimate (y(x), z(x)) as follows

y(x) = (AX2AT )−1AX2(Qx+ c), (3.21)

z(x) = [In − AT (AX2AT )−1AX2](Qx+ c). (3.22)

We have  ATy(x) + z(x) = Qx+ c,

Ax = b, x ≥ 0.
(3.23)

Note: If x(t) is the solution of ODE (3.4), z(x(t)) may not be nonnegative for any

t ∈ [0, +∞).

Let x(t) be the solution of the ODE (3.4). Then x(t) ∈ L2(x
0) for any t ∈ [0, +∞).

Let’s define limit set

Ω3(x
0) = {p ∈ P+ | p is a cluster point of x(t) of ODE (3.4)}.

L2(x
0) is bounded. Thus Ω3(x

0) is nonempty, connected, and compact [15].

For some x̄ ∈ Ω3(x
0), define (z̄, ȳ) as follows

z̄ = z(x̄) = [In − AT (AX̄2AT )−1AX̄2](Qx̄+ c), (3.24)

and

ȳ = y(x̄) = (AX̄2AT )−1AX̄2(Qx̄+ c). (3.25)

Clearly

Qx̄+ c = z̄ + AT ȳ. (3.26)

(3.15) and Theorem 3.6 imply the following proposition.

Proposition 3.3. If x ∈ Ω3(x
0), then

(i) q(x) = q(x̄);

(ii) Xz(x) = 0, where z(x) is defined in (3.22).
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Let J̄ = {j|z̄j = 0, j ∈ {1, . . . , n}}, J̄ c = {1, . . . , n} \ J̄ . Define

Λ̄3 = {x ∈ P+ | xJ̄c = 0, q(x) = q(x̄)}, (3.27)

proposition 3.3 (ii) implies x̄J̄c = 0, so x̄ ∈ Λ̄3. Thereby Λ̄3 is nonempty. In addition,

it is easy to verify that Λ̄3 is closed.

Theorem 3.7. Λ̄3 is convex.

Proof. For any two points x̃ and x̌ in Λ̄3, and any λ ∈ [0, 1], let x̂ = λx̃ + (1 − λ)x̌.

Then

x̂J̄c = 0, Ax̂ = b, x̂ ≥ 0.

From Proposition 3.3 (i), along with the convexity of q(x), we have

q(x̂) ≤ λq(x̃) + (1− λ)q(x̌) = q(x̄).

On the other hand, let ∆x = x̂− x̄. Then (∆x)J̄c = 0, A∆x = 0 and z̄T∆x = 0.

From (3.26) and the convexity of q(x), we have

q(x̂) ≥ q(x̄) +∇q(x̄)T (∆x)

= q(x̄) + (z̄ + AT ȳ)T (∆x)

= q(x̄).

So q(x̂) = q(x̄), thus x̂ ∈ Λ̄3. This completes the proof.

Theorem 3.8. z(x) = z̄ for all x ∈ Λ̄3.

Proof. For any x ∈ Λ̄3, (3.27) implies Xz̄ = 0. Theorem 3.7 and Lemma 1.4, together

with the definition of Λ̄3 and (3.26) ensure Qx+ c = Qx̄+ c = z̄ + AT ȳ. Thus

z(x) = [In − AT (AX2AT )−1AX2](Qx+ c)

= [In − AT (AX2AT )−1AX2](z̄ + AT ȳ)

= [In − AT (AX2AT )−1AX2]z̄

= z̄.
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Theorem 3.9. Ω3(x
0) ⊆ Λ̄3.

Proof. If J̄ c is empty, then Λ̄3 = {x ∈ P+| q(x) = q(x̄)}. From Proposition 3.3 (i),

the result holds clearly. If J̄c is nonempty, suppose there is one point x̂ ∈ Ω3(x
0) but

x̂ /∈ Λ̄3. Then x̂ ∈ P+, q(x̂) = q(x̄), but x̂ĵ > 0 for some ĵ ∈ J̄c. Clearly Λ̄3 lies inside

the bounded level set L2(x
0), so Λ̄3 is compact. Thus z(x) is uniformly continuous

over Λ̄3. There exists some δ0 > 0 such that

|zj(x)| ≥ |z̄j|/2 ∀j ∈ J̄ c, ∀x ∈ U(Λ̄3, δ0)∩P+, (3.28)

where U(Λ̄3, δ0) is the δ0-neighborhood of set Λ̄3. Let δ = min{δ0,
x̂ĵ

2
}. Then x̂ /∈

U(Λ̄3, δ). Since Ω3(x
0) is connected, x̄ ∈ Ω3(x

0), x̂ ∈ Ω3(x
0) and

x̄ ∈ Λ̄3, x̂ /∈ U(Λ̄3, δ),

there must exist some point x̃ ∈ Ω3(x
0) such that

x̃ ∈ U(Λ̄3, δ), x̃ /∈ Λ̄3. (3.29)

In addition, x̃ ∈ Ω3(x
0) implies

x̃ ∈ P+, q(x̃) = q(x̄). (3.30)

(3.29) and (3.30) imply there exists some r ∈ J̄c such that x̃r ̸= 0. Since δ ≤ δ0,

(3.28) implies |zj(x̃)| ≥ |z̄j|/2 > 0 for all j ∈ J̄c. Thus x̃rzr(x̃) ̸= 0, which contradicts

with the fact X̃z(x̃) = 0 (Proposition 3.3 (ii)) since x̃ ∈ Ω3(x
0).

Based on the continuity of z(x(t)), compactness of the Λ̄3, together with Theorem

(3.8) and Theorem (3.9), the following theorem is straightforward.

Theorem 3.10. If x(t) is the solution of ODE (3.4), then lim
t→+∞

z(x(t)) = z̄.
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Since A has full row rank, form (3.23) and Theorem 3.10, the following theorem

is also obvious.

Theorem 3.11. If x(t) is the solution of ODE (3.4), then lim
t→+∞

y(x(t)) = ȳ.

Similar to the proof of Theorem 2.6, the following theorem is clear.

Theorem 3.12. z̄ ≥ 0.

Theorem 3.13. Any point x ∈ Ω3(x
0) is an optimal solution of problem (P4).

Proof. For any x ∈ Ω3(x
0), Ax = b, x ≥ 0. Proposition 3.3 (ii) and Theorem 3.10

imply

Xz(x) = Xz̄ = 0.

From Theorem 3.8 and Theorem 3.9, we know

Qx+ c = Qx̄+ c.

Together with (3.26), triple (x, ȳ, z̄) satisfies the following system
Ax = b, x ≥ 0,

Xz̄ = 0, z̄ ≥ 0,

AT ȳ + z̄ = Qx+ c.

(3.31)

Thus the optimality of x is straightforward.

3.5 Strong Convergence

For linear programming, there are two techniques can be used to prove the conver-

gence of the affine scaling continuous trajectory. The first one has been described in

Section 3.2, for more details, please see [4]. The other is the angle condition, which

can be stated by the following lemma.
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Lemma 3.3. [66, 69] There exists a positive constant ∆(A, c) which is determined

from A and c such that

cTXPAXXc ≥ ∆(A, c)∥c∥∥XPAXXc∥, ∀x ∈ P++.

Absil, Mahony and Andrews gave a sufficient condition to ensure the strong con-

vergence of the general dynamical system, which is stated as follows.

Lemma 3.4. [2] Let ϕ be a real analytic function 1 and let x(t) be a C1 curve in Rn,

with ẋ(t) = dx(t)
dt

denoting its time derivative. Assume that there exist a δ > 0 and a

real τ such that for t > τ , x(t) satisfies the angle condition

dϕ(x(t))

dt
≡ ⟨∇ϕ(x(t)), ẋ(t)⟩ ≤ −δ · ∥∇ϕ(x(t))∥ · ∥ẋ(t)∥,

and a weak decrease condition

[
d

dt
ϕ(x(t)) = 0] ⇒ [ẋ(t) = 0].

Then, either lim
t→+∞

∥x(t)∥ = +∞ or there exists x∗ ∈ Rn such that lim
t→+∞

x(t) = x∗.

Lemma 3.3 together with Lemma 3.4 ensures the strong convergence of the affine

scaling trajectories for linear programming. A natural question arises, does the angle

condition hold for CQP? The following example indicates that the objective function

q(x) may not be a proper energy function used to prove the angle condition.

Example 3.1.

min 1
2
(x2

1 + x2
2) + x3

s.t. x1 = 1, x1, x2, x3 ≥ 0.

If the ODE (3.4) is used to solve this problem, then

dx

dt
= −XPAXX(Qx+ c) = −


0

x3
2

x2
3

 .

1A real function is said to be analytic if it possesses derivatives of all orders and agrees with its

Taylor series in the neighborhood of every point.
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Furthermore, x can be given explicitly by x = (1, 1√
2(t+k1)

, 1
t+k2

)T , where k1, k2 are

two constants depend on the initial condition. If ϕ(x) = 1
2
(x2

1 + x2
2) + x3, then

lim
t→+∞

⟨∇ϕ(x(t)), ẋ(t)⟩
∥∇ϕ(x(t))∥ · ∥ẋ(t)∥

= − lim
t→+∞

x4
2 + x2

3√
x2
1 + x2

2 + 1 ·
√
x6
2 + x4

3

= − lim
t→+∞

1
4(t+k1)2

+ 1
(t+k2)2√

1 + 1
2(t+k1)

+ 1 ·
√

1
8(t+k1)3

+ 1
(t+k2)4

= 0.

In this thesis, we get the convergence of ODE (3.4) by proving that there is an

isolated point in the limit set Ω3(x
0).

Theorem 3.14. The limit set Ω3(x
0) only contains a single point.

Proof. Let y(x), z(x) be defined in (3.21), (3.22) respectively. From Theorem (3.10)

and Theorem (3.11), y(x) and z(x) are two constants on Ω3(x
0). For simplicity,

these two constants are denoted by y∗ and z∗ respectively. For any x ∈ Ω3(x
0), the

following equalities hold  Qx− ATy∗ = z∗ − c,

Ax = b.
(3.32)

Since Ω3(x
0) is nonempty, assume x∗ ∈ Ω3(x

0) and the number of its nonzero

components is maximum for all x ∈ Ω3(x
0). The index set {1, . . . , n} can be divided

into two disjoint sets B, N based on the following rule

x∗
i > 0 (i ∈ B) and x∗

i = 0 (i ∈ N).

If B = ∅, then there exists a unique point x∗ = 0 in Ω3(x
0). So suppose B is

nonempty. Without loss of generality, furthermore suppose

B = {1, . . . , k} and N = {k + 1, . . . , n}.

Similarly, we can partition z∗ =

z∗B

z∗N

, c =

cB

cN

, e =

eB

eN

 respectively, where

z∗B, cB, eB ∈ Rk, and z∗N , cN , eN ∈ R(n−k). Correspondingly, Q and A can be
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rewritten as

Q =

QBB QBN

QT
BN QNN

 A =
(
AB AN

)
,

where QBB ∈ Rk×k, QBN ∈ Rk×(n−k), QNN ∈ R(n−k)×(n−k), AB ∈ Rm×k, and AN ∈

Rm×(n−k).

Since x∗ satisfies the equations (3.32), we have
QBBx

∗
B +QBNx

∗
N − AT

By
∗ = z∗B − cB,

QT
BNx

∗
B +QNNx

∗
N − AT

Ny
∗ = z∗N − cN ,

−ABx
∗
B − ANx

∗
N = −b.

(3.33)

It follows readily from X∗z∗ = 0, x∗
B > 0 that z∗B = 0, as a result

QBBx
∗
B − AT

By
∗ = −cB,

QT
BNx

∗
B − AT

Ny
∗ = z∗N − cN ,

−ABx
∗
B = −b,

(3.34)

thus cB ∈ range
(
QBB −AT

B

)
.

For notational and analytical simplicity, vector g ∈ R(m+n) and matrix W ∈

R(m+n)×k are introduced

g =


−cB + AT

By
∗

AT
Ny

∗ + z∗N − cN

−b

 , W = (wij)(m+n)×k =
(
w1 w2 . . . wk

)
=


QBB

QT
BN

−AB

 ,

where wi ∈ R(m+n) (i = 1, . . . , k).

Let δ1 =
1
2
min
i∈B

{x∗
i }. From the definition of x∗, we have

xB > 0, xN = 0, ∀x ∈ Ω3(x
0) ∩ U(x∗, δ1), (3.35)

where U(x∗, δ1) is the δ1-neighborhood of x∗. Next we will prove that x∗ is an isolated

point of Ω3(x
0).
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Combing (3.32) and (3.35), for any point x =

xB

xN

 ∈ Ω3(x
0) ∩ U(x∗, δ1), the

following equality holds

WxB = g, (3.36)

(3.36) can be rewritten in an equivalent way as



w11x1 + · · ·+ w1kxk = g1

w21x1 + · · ·+ w2kxk = g2
...

w(m+n)1x1 + · · ·+ w(m+n)kxk = g(m+n)

(3.37)

or

x1w1 + · · ·+ xkwk = g. (3.38)

If rank(w1, w2, . . . , wk) = k, g will be expressed uniquely as a linear combination

of w1, w2, . . . , wk. Thus except for x∗, there is no other point in Ω3(x
0) ∩ U(x∗, δ1)

such that (3.38) holds. In other words, x∗ is an isolated point of Ω3(x
0).

If rank(w1, w2, . . . , wk) = r < k, we notice that

dx

dt
= −X[In −XAT (AX2AT )−1AX]X(Qx+ c)

= −X2
[ (

Q −AT

) x

y(x)

+ c
]

= −

X2
B 0

0 X2
N

[QBB QBN −AT
B

QT
BN QNN −AT

N




xB

xN

y(x)

+

cB

cN

]
,
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thus

dxB

dt
= −X2

B

[ (
QBB QBN −AT

B

)
xB

xN

y(x)

+ cB

]
(3.39)

= −X2
B

[
W T

 x

y(x)

+ cB

]
. (3.40)

Based on the definition of x∗ and the boundedness of the optimal solution set, the

case that r = 0 is excluded. If r = 0, i.e., w1 = w2 = · · · = wk = 0, dxi(t)
dt

(i = 1, . . . , k)

will reduce to

dxi(t)

dt
= −cix

2
i .

By Theorem 3.6, lim
t→+∞

dxi(t)
dt

= 0. For any i ∈ {1, . . . , k}, there are two cases

(a) ci = 0 ⇒ xi(t) ≡ x0
i , but W = 0 and ci = 0 imply the optimal solution set of

problem (P4) is unbounded, which contradicts with Assumption 3.1;

(b) ci ̸= 0 ⇒ x∗
i = 0, it is a contradiction to the assumption that x∗

i is positive.

Thus 1 ≤ r < k, without loss of generality, assume {w1, w2, . . . , wr} is a maximum

linearly independent group of {w1, w2, . . . , wk}. Thus there exists a matrix V =

(vij)r×(k−r) ∈ Rr×(k−r) such that

wr+i =
r∑

j=1

vjiwj, i = 1, . . . , k − r. (3.41)

Denote

U =
(
u1 u2 . . . uk−r

)
=



v11 v12 · · · v1(k−r)

v21 v22 · · · v2(k−r)

...
... · · · ...

vr1 vr2 · · · vr(k−r)

−1 0 · · · 0

0 −1 · · · 0

...
... · · · ...

0 0 · · · −1



,
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where ui ∈ Rk (i = 1, 2, . . . , k − r), thus

WU =
(
w1 w2 . . . wk

)(
u1 u2 . . . uk−r

)
= 0. (3.42)

Since cB ∈ range
(
QBB −AT

B

)
⊆ range(W T ), we get

uT
i cB = 0, i = 1, . . . , k − r. (3.43)

To overcome the difficulty caused by the degeneracy in linear equations (3.37), let

us define

yi(t) = uT
i X

−1
B (t)eB, i = 1, . . . , k − r, t ≥ 0, (3.44)

where x(t) is the solution of ODE (3.4). Theorem 3.3 and Theorem 3.4 indicate (3.44)

is well defined on [0, +∞). From (3.42) and (3.43), we have

dyi(t)

dt
= uT

i X
−2
B X2

B

[ (
QBB QBN −AT

B

)
xB

xN

y(x)

+ cB

]

= uT
i W

T

 x

y(x)

+ uT
i cB

= (Wui)
T

 x

y(x)

+ uT
i cB

≡ 0, i = 1, . . . , k − r.

Thus there exist k − r constants c̄i (i = 1, . . . , k − r) such that

yi(t) ≡ c̄i, i = 1, . . . , k − r, t ∈ [0, +∞). (3.45)

Clearly, the following nonlinear equations hold

uT
i X

−1
B eB ≡ c̄i, i = 1, . . . , k − r, ∀x ∈ Ω3(x

0) ∩ U(x∗, δ1). (3.46)
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Let H ∈ Rr×k be a matrix generated by choosing r linearly independent rows, say

l1, . . . , lr, from matrix W . H can be denoted as

H =


wl11 · · · wl1r wl1(r+1) · · · wl1k

wl21 · · · wl2r wl2(r+1) · · · wl2k

...
. . .

...
...

. . .
...

wlr1 · · · wlrr wlr(r+1) · · · wlrk


We consider the following nonlinear equations

wl11s1 + · · ·+ wl1rsr + wl1(r+1)sr+1 + wl1(r+2)sr+2 + · · ·+ wl1ksk = gl1

wl21s1 + · · ·+ wl2rsr + wl2(r+1)sr+1 + wl2(r+2)sr+2 + · · ·+ wl2ksk = gl2
...

wlr1s1 + · · ·+ wlrrsr + wlr(r+1)sr+1 + wlr(r+2)sr+2 + · · ·+ wlrksk = glr

v11
s1

+ · · ·+ vr1
sr

− 1
sr+1

− 0− · · · − 0 = c̄1

v12
s1

+ · · ·+ vr2
sr

− 0− 1
sr+2

− · · · − 0 = c̄2
...

v1(k−r)

s1
+ · · ·+ vr(k−r)

sr
− 0− 0− · · · − 1

sk
= c̄k−r

(3.47)

From (3.37) and (3.46), for any x ∈ Ω3(x
0) ∩ U(x∗, δ1), s = xB = (x1, x2, . . . , xk)

T

is a solution of the system (3.47). The Jacobian matrix of the nonlinear equations

(3.47) is

J(s) =



wl11 · · · wl1r wl1(r+1) wl1(r+2) · · · wl1k

wl21 · · · wl2r wl2(r+1) wl2(r+2) · · · wl2k

...
. . .

...
...

...
. . .

...

wlr1 · · · wlrr wlr(r+1) wlr(r+2) · · · wlrk

−v11
s21

· · · −vr1
s2r

1
s2r+1

0 · · · 0

−v12
s21

· · · −vr2
s2r

0 1
s2r+2

· · · 0

...
. . .

...
...

...
. . .

...

−v1(k−r)

s21
· · · −vr(k−r)

s2r
0 0 · · · 1

s2k



.
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From (3.41), after a series of Gaussian operations, J(s) can be converted into

J̄(s) =



wl11 · · · wl1r 0 0 · · · 0

wl21 · · · wl2r 0 0 · · · 0

...
. . .

...
...

...
. . .

...

wlr1 · · · wlrr 0 0 · · · 0

−v11
s21

· · · −vr1
s2r

1
s2r+1

+
r∑

j=1

v2j1
s2j

r∑
j=1

vj2vj1
s2j

· · ·
r∑

j=1

vj(k−r)vj1
s2j

−v12
s21

· · · −vr2
s2r

r∑
j=1

vj1vj2
s2j

1
z2r+2

+
r∑

j=1

v2j2
s2j

· · ·
r∑

j=1

vj(k−r)vj2
s2j

...
. . .

...
...

...
. . .

...

−v1(k−r)

s21
· · · −vr(k−r)

s2r

r∑
j=1

vj1vj(k−r)

s2j

r∑
j=1

vj2vj(k−r)

s2j
· · · 1

s2k
+

r∑
j=1

v2
j(k−r)

s2j


.
=

M1 0

M2 M3

 ,

where M1 ∈ Rr×r, M2 ∈ R(k−r)×r, and M3 ∈ R(k−r)×(k−r). It is very easy to verify

that

(a) rank(M1) = r, and

(b)

M3 =



v11
s1

v21
s2

· · · vr1
sr

v12
s1

v22
s2

· · · vr2
sr

...
...

. . .
...

v1(k−r)

s1

v2(k−r)

s2
· · · vr(k−r)

sr





v11
s1

v12
s1

· · · v1(k−r)

s1

v21
s2

v22
s2

· · · v2(k−r)

s2
...

...
. . .

...

vr1
sr

vr2
sr

· · · vr(k−r)

sr



+



1
s2r+1

0 · · · 0

0 1
s2r+2

· · · 0

...
...

. . .
...

0 0 · · · 1
s2k


.

Thus J(s) is invertible ∀s (∈ Rk) > 0.

Let F (s) = 0 be the system (3.47). From previous discussions, we know (i)

∀x ∈ Ω3(x
0)∩U(x∗, δ2), s = (x1, x2, . . . , xk)

T is a solution of F (s) = 0, in particular,
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s∗ = (x1, x2, . . . , xk)
T is also a solution of F (s) = 0; (ii) ∂F

∂s
is invertible ∀s (∈ Rk) > 0;

and (iii) s∗ > 0. By Lemma 1.6, s = s∗ must be an isolated point satisfying F (s) = 0.

Therefore, there exists a δ2 > 0 (δ2 ≤ δ1) such that for any x ∈ Ω3(x
0) ∩ U(x∗, δ2),

s = (x1, x2, . . . , xk)
T is a solution of system (3.47) if and only if x = x∗. Thus there

is only one point x∗ ∈ Ω3(x
0) ∩ U(x∗, δ2), i.e., x∗ is an isolated point of Ω3(x

0).

But Ω3(x
0) is connected, thus there is only one point x∗ in Ω3(x

0). The proof is

complete.

Theorem 3.13 and Theorem 3.14 ensure the solution trajectory of the system (3.4)

will tend to an optimal solution of the problem (P4) as t → +∞. Thus the strong

convergence is proved.

3.6 Concluding Remarks

In this chapter, by adopting the continuous method framework, the first-order affine

scaling continuous trajectory is discussed. The convergence of the continuous tra-

jectory is obtained. In fact, the properties outlined in this chapter also hold for the

following ODE system, such as existence, uniqueness and convergence of the solution

trajectory, optimality of the limit point.

dx

dt
= −XγPAXγXγ(Qx+ c), x(0) = x0 ∈ P++. (3.48)

where γ ≥ 1
2
is constant. Lyapunov direct method is a powerful tool to prove the

convergence of ODE system. But for complicated system (3.4), it is very difficult

to construct a proper Lyapunov function to prove the convergence. It is an open

problem whether the ODE system (3.4) is stable in the sense of Lyapunov.
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Chapter 4

Summary

4.1 Summary of the Thesis

In this thesis, we propose several continuous method models to solve CQP problems

with different types of constraints. Starting from any interior point, the solution

trajectories of our continuous method models are always restricted in the interior

of the feasible region. Moreover, the proofs of convergence are different from those

appeared in neural network, where Lyapunov potential functions are needed.

For the nonnegativity and box constrained CQP, without projection technology,

the structures of our ODE systems are simpler and sufficiently smooth. In the future,

it is possible that more effective numerical solution schemes may be explored for our

ODE systems. Large-scale random problems illustrate that our new methods are very

encouraging.

For CQP in the standard form, the first-order affine scaling continuous trajectory

is considered. Two existing important theoretical tools for strong convergence in

linear programming are not suitable for quadratic programming, a new method to

prove the strong convergence is presented here. In fact, the proof skills in this thesis

can be generalized to prove the convergence of the following dynamical system

dx

dt
= −[In − AT (AAT )−1A](Qx+ c), (4.1)

which can be used to solve the following equality constrained CQP

min q(x) = 1
2
xTQx+ cTx

s.t. Ax = b.
(P7)
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4.2 Future Research

Compared with the well-known quadratic programming, the applications of fractional

programming are less known. The fractional programming problems are particularly

useful in the solution of economic problems in which various activities use certain

resources in various pro-portions, while the objective is to optimize a certain indi-

cator, usually the most favorable return-on-allocation ratio subject to the constraint

imposed on the availability of goods. Especially, linear fractional programming arises

in fields of game theory, network flows; quadratic fractional programming is used on

field production planning and inventories. For more applications, see [9, 18, 86]. As

it is known, the ratio of convex and concave functions is not convex in general, even

numerator and denominator are both linear. It is possible to solve quasi-convex frac-

tional programming by several of the standard convex programming algorithms. In

future study, we plan to present new continuous method models for solving fractional

programming.

Effective numerical solution schemes for our ODEs are urgently needed. For

optimization problems, since we are only interested in the limit point of the ODE, it

is possible to introduce some new numerical method framework so that we can find an

optimal solution in less time. Taking the ODE system (2.9) for example, we present

our idea to find an optimal solution briefly. ODE system (2.9) can be rewritten as
dx(t)
dt

= −X(Qx+ c), t ≥ 0,

x(0) = x0 > 0.
(4.2)

For ODE (4.2), we introduce the following implicit-explicit Euler iterative scheme

xk+1 = xk − hkXk+1(Qxk + c), (4.3)

where xk is the k-th iterative point, and hk is the corresponding step size to be

determined. For simplicity, scheme (4.3) can be rewritten in the following equivalent
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form

[xk+1]i =
[xk]i

1 + hk[Qxk + c]i
, i = 1, 2, . . . , n. (4.4)

Considering the original quadratic programming problem, we require xk > 0 and

q(xk+1) ≤ q(xk) for any k.

Claim 4.1. For iterative scheme (4.4), xk+1 > 0 if step size hk is selected by the

following rule

hk =


2hk−1, if min{[Qxk + c]i} > 0;

r, if − 1 < min{[Qxk + c]i} < 0;

−0.99
min{[Qxk+c]i} , if min{[Qxk + c]i} ≤ −1;

(4.5)

where 0 < r < 1. In our following numerical simulation, we take r = 0.8.

From (4.3), we have

q(xk+1) =
1

2
xT
k+1Qxk+1 + cTxk+1

=
1

2
[xk − hkXk+1(Qxk + c)]TQ[xk − hkXk+1(Qxk + c)]

+cT [xk − hkXk+1(Qxk + c)]

=
1

2
xT
kQxk + cTxk − hk(Qxk + c)TXk+1(Qxk + c)

+
h2
k

2
(Qxk + c)TXk+1QXk+1(Qxk + c)

= q(xk)−
hk

2
(Qxk + c)TXk+1(2X

−1
k+1 − hkQ)Xk+1(Qxk + c).

If (2X−1
k+1 − hkQ) is positive definite, then q(xk+1) ≤ q(xk). To ensure this result, we

only need

min{2(1 + hk[Qxk + c]i
hk[xk]i

} ≥ min{ 2

hk[xk]i
}+min{2[Qxk + c]i

[xk]i
} > λmax(Q), (4.6)

where λmax(Q) is the maximum eigenvalue of Q. Thus the following claim is clear.

Claim 4.2. For iterative scheme (4.4), qk+1 ≤ qk if step size hk is selected by the

following rule

hk =

 any positive number, if λmax(Q)− γ ≤ 0;

2
(λmax(Q)−γ)max{[xk]i}

, if λmax(Q)− γ > 0.
(4.7)
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where γ = 2min{[X−1
k (Qxk + c)]i}.

Let h̃k and h̄k be determined by rules (4.5) and (4.7) respectively, furthermore

hk = min{h̃k, h̄k}. Then hk will be an appropriate step size for iterative scheme

(4.4). To illustrate the feasibility of iterative scheme (4.4), ten random nonnegativity

constrained CQP problems (generated as in Section 2.4 in Chapter 2) are tested. For

consistency, all the parameters are the same to those in Section 2.4.1. The initial

points for the ten randomly generated (Q, c)s are also set to x0 = (1, · · · , 1)T . For

stopping criterion |Xk(Qxk + c)|∞ ≤ 10−4, the numerical results are reported in

Table 4.1. For better understanding of iterative scheme (4.4), Figure 4.1 depicts the

transient behavior of step size hk with n = 1000 and ϵ = 10−5.

Table 4.1: The performance of iterative scheme (4.4) (ϵ = 10−4)

n 200 400 600 800 1000 1200 1400 1600 1800 2000

CPU(s) 0.04 0.03 0.05 0.04 0.06 0.08 0.10 0.12 0.16 0.19

From Table 2.1 and Table 4.1, we can see that the iterative scheme (4.4) is faster

in finding an optimal solution for problem (P2) in moderate accuracy. It is natural

since the iterative points are not required to be close to the real solution trajectory.

It should be noted that the iterative scheme (4.4) is very sensitive to the stopping

criterion. Figure 4.1 indicts that step size hk will tend to a constant. The investigation

on various theoretical results for iterative scheme (4.4) is one of our future goals.
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Figure 4.1: The transient behavior of step size hk for the iterative scheme (4.4) with

n = 1000 and ϵ = 10−5.
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