Document Type

Journal Article

Department/Unit

Department of Chemistry

Abstract

We herein report a label-free and non-enzymatic electrochemical sensor for the highly sensitive detection of hydrogen peroxide (H2O2) based on a novel “on-off-on” switch system. In our design, MB was used as an electron mediator to accelerate the electron transfer while AuNPs was used to amplify the electrochemical signal due to its excellent biocompatibility and good conductivity. The “switch-off” state was achieved by introducing the guanine-rich capture probe (CP) and an iridium complex onto the electrode surface to form a hydrophobic layer, which then hinders electron transfer. Upon addition of H2O2, fenton reaction occurs and produces OH• in the presence of Fe2+. The OH• cleaves the CP into DNA fragments, thus resulting in the release of CP and iridium complex from the sensing interface, recovering the electrochemical signal to generate a “switch-on” state. Based on this novel switch system, a detection limit as low as 3.2 pM can be achieved for H2O2 detection. Moreover, satisfactory results were obtained by using this method for the detection of H2O2 in sterilized milk. To the best of our knowledge, this is the first G-quadruplex-based electrochemical sensor using an iridium(III) complex.

Publication Year

2016

Journal Title

Scientific Reports

Volume number

6

Publisher

Nature Publishing Group

First Page (page number)

25774

Referreed

1

DOI

10.1038/srep25774

ISSN (print)

20452322

Link to Publisher’s Edition

http://dx.doi.org/10.1038/srep25774

Included in

Chemistry Commons

Share

COinS