Year of Award

2014

Degree Type

Thesis

Degree Name

Master of Philosophy (MPhil)

Department

Department of Physics.

Principal Supervisor

Cheah, K. W.

Keywords

Electric properties, Optical properties, Thin films

Language

English

Abstract

In recent years, portable devices and larger display are the trend of market, so transparent conducting oxides (TCO) draw a considerable interest due to their unique characteristics and essential role in the technology of flat panel display. Indium tin oxide (ITO) is one of the most widely used TCO in the application of display technology. In this work, properties of ITO thin film as a function of dopant ratio and density of sputtering targets had been done. It is found that the mechanism of oxygen vaccines is more dominated in electrical conduction than dopant concentration. Meanwhile, the conductivity of ITO thin film depends on the sputtering condition than the target itself. Annealing process is one of the ways to enhance the optical properties of ITO thin film. This process can change the crystal structure of film from amorphous to crystalline but limited by the presence of the oxygen. Apart from the transitional single layer of ITO thin film, a modified structure had been done by inserting a thin layer of metal (Al/Ag) into ITO which provides a highway for carrier transparent. A modified structure with Ag is successfully demonstrated and well agrees with the theory. OLED application was also done by using sandwich structure. The key of sandwich structure is the metal layer, non-reactive and highly conducting material should be selected. Upper and bottom TCO layers are purpose-built for application without affect the properties of structure. This structure also shows more robust on the flexible substrate than single layer ITO.

Comments

Thesis (M.Phil.)--Hong Kong Baptist University, 2014.;Principal supervisor: Professor Cheah Kok Wai.;Includes bibliographical references (pages 110-113)

Copyright

The author retains all rights to this work. The author has signed an agreement granting HKBU a non-exclusive license to archive and distribute their thesis.


Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.