Document Type

Journal Article

Department/Unit

Department of Computer Science

Title

Lip segmentation and tracking under MAP-MRF framework with unknown segment number

Language

English

Abstract

This paper proposes a color lip segmentation method with unknown true segment number. Firstly, we build up a multi-layer hierarchical model, in which each layer corresponds to one segment cluster. Subsequently, a Markov random field derived from this model is obtained such that the segmentation problem is formulated as a labeling optimization problem under the maximum a posteriori Markov random field (MAP-MRF) framework. Suppose the pre-assigned number of segment clusters may over-estimate the ground truth, whereby leading to the over-segmentation. We present a rival penalized iterative algorithm capable of performing segment clusters and over-segmentation elimination simultaneously. Based upon this algorithm, we propose a lip segmentation and tracking scheme, featuring the robust performance to the estimate of the number of segment clusters. Experimental results show the efficacy of the proposed method in comparison with the existing counterparts. © 2012 Elsevier B.V..

Keywords

Color lip segmentation, Hierarchical model, MAP-MRF framework, Segment number

Publication Date

2013

Source Publication Title

Neurocomputing

Volume

104

Start Page

155

End Page

169

Publisher

Elsevier

DOI

10.1016/j.neucom.2012.10.009

ISSN (print)

09252312

This document is currently not available here.

Share

COinS