Document Type

Journal Article

Department/Unit

Department of Computer Science

Title

Towards understanding the robustness of energy distribution networks based on macroscopic and microscopic evaluations

Language

English

Abstract

Supply disruptions on one node of a distribution network may spread to other nodes, and potentially bring various social and economic impacts. To understand the performance of a distribution network in the face of supply disruptions, it would be helpful for policy makers to quantitatively evaluate the robustness of the network, i.e., its ability of maintaining a supply-demand balance on individual nodes. In this paper, we first define a notion of network entropy to macroscopically characterize distribution robustness with respect to the dynamics of energy flows. Further, we look into how microscopic evaluation based on a failure spreading model helps us determine the extent to which disruptions on one node may affect the others. We take the natural gas distribution network in the USA as an example to demonstrate the introduced concepts and methods. Specifically, the proposed macroscopic and microscopic evaluations provide us a means of precisely identifying transmission bottlenecks in the U.S. interstate pipeline network, ranking the effects of supply disruptions on individual nodes, and planning geographically advantageous locations for natural gas storage. These findings can offer policy makers, planners, and network managers with further insights into emergency planning as well as possible design improvement. © 2012 Elsevier Ltd.

Keywords

Distribution robustness, Energy distribution network, Mitigation strategy

Publication Date

2012

Source Publication Title

Energy Policy

Volume

49

Start Page

318

End Page

327

Publisher

Elsevier

DOI

10.1016/j.enpol.2012.06.037

Link to Publisher's Edition

http://dx.doi.org/10.1016/j.enpol.2012.06.037

ISSN (print)

03014215

This document is currently not available here.

Share

COinS