http://dx.doi.org/10.1109/TCSVT.2013.2248494">
 

Document Type

Journal Article

Department/Unit

Department of Computer Science

Title

Supervised spatio-temporal neighborhood topology learning for action recognition

Language

English

Abstract

Supervised manifold learning has been successfully applied to action recognition, in which class label information could improve the recognition performance. However, the learned manifold may not be able to well preserve both the local structure and global constraint of temporal labels in action sequences. To overcome this problem, this paper proposes a new supervised manifold learning algorithm called supervised spatio-temporal neighborhood topology learning (SSTNTL) for action recognition. By analyzing the topological characteristics in the context of action recognition, we propose to construct the neighborhood topology using both supervised spatial and temporal pose correspondence information. Employing the property in locality preserving projection (LPP), SSTNTL solves the generalized eigenvalue problem to obtain the best projections that not only separates data points from different classes, but also preserves local structures and temporal pose correspondence of sequences from the same class. Experimental results demonstrate that SSTNTL outperforms the manifold embedding methods with other topologies or local discriminant information. Moreover, compared with state-of-the-art action recognition algorithms, SSTNTL gives convincing performance for both human and gesture action recognition. © 1991-2012 IEEE.

Keywords

Action recognition, manifold learning, neighborhood topology learning, supervised spatial, temporal pose correspondence

Publication Date

2013

Source Publication Title

IEEE Transactions on Circuits and Systems for Video Technology

Volume

23

Issue

8

Start Page

1447

End Page

1460

Publisher

Institute of Electrical and Electronics Engineers

ISSN (print)

10518215

This document is currently not available here.

Share

COinS