http://dx.doi.org/10.1109/WI-IAT.2013.61">
 

Document Type

Conference Paper

Department/Unit

Department of Computer Science

Title

Incorporating structural diversity of neighbors in a diffusion model for social networks

Language

English

Abstract

Diffusion is known to be an important process governing the behaviours observed in network environments like social networks, contact networks, etc. For modeling the diffusion process, the Independent Cascade Model (IC Model) is commonly adopted and algorithms have been proposed for recovering the hidden diffusion network based on observed cascades. However, the IC Model assumes the effects of multiple neighbors on a node to be independent and does not consider the structural diversity of nodes' neighbourhood. In this paper, we propose an extension of the IC Model with the community structure of node neighbours incorporated. We derive an expectation maximization (EM) algorithm to infer the model parameters. To evaluate the effectiveness and efficiency of the proposed method, we compared it with the IC model and its variants that do not consider the structural properties. Our empirical results based on the MemeTracker dataset, shows that after incorporating the structural diversity, there is a significant improvement in the modelling accuracy, with reasonable increase in run-time. © 2013 IEEE.

Keywords

Diffusion network, Independent Cascade Model, Social networks, Structural diversity

Publication Date

2013

Source Publication Title

Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2013 IEEE/WIC/ACM International Joint Conferences on : date 17-20 Nov. 2013.

Start Page

431

End Page

438

Conference Location

Atlanta, United States

Publisher

n.a.

ISBN (print)

9781479929023

This document is currently not available here.

Share

COinS