http://dx.doi.org/10.1109/ICC.2014.6883546">
 

Document Type

Conference Paper

Department/Unit

Department of Computer Science

Title

Channel-hopping based on available channel set for rendezvous of cognitive radios

Language

English

Abstract

Rendezvous is a necessary operation for cognitive users to establish communication links in cognitive radio networks (CRNs). To guarantee the rendezvous in finite time, all existing rendezvous algorithms generate CH (channel-hopping) sequences using the whole channel set and attempt rendezvous on each of the channels (i.e., both available channels and unavailable channels). In practice, the available channel set is usually a small portion of the whole channel set due to dynamics of channel availabilities and limited sensing capabilities of cognitive users. Thus, the CH sequences using the whole channel set may attempt unnecessary rendezvous in uncertain channels (e.g., unavailable channels or randomly-selected channels) which greatly degrades the performance. In this study, we propose a new rendezvous algorithm that generates channel-hopping sequences based on available channel set (CSAC) for more efficient rendezvous. We prove that CSAC gives guaranteed rendezvous and derive its upper-bound on maximum time-to-rendezvous (MTTR) which is an expression of the number of available channels instead of the number of all potential channels. To the best of our knowledge, CSAC is the first one in the literature that exploits the only available channels in designing CH sequences while providing guaranteed rendezvous. Experimental results show that CSAC can significantly improve the MTTR compared to state-of-the-art. © 2014 IEEE.

Keywords

channel hopping, cognitive radio, rendezvous

Publication Date

2014

Source Publication Title

IEEE ICC 2014 - Cognitive Radio and Networks Symposium

Start Page

1573

End Page

1579

Conference Location

Sydney, Australia

Publisher

IEEE

ISBN (print)

9781479920037

This document is currently not available here.

Share

COinS