Document Type

Conference Paper

Department/Unit

Department of Computer Science

Title

Multi-view based AdaBoost classifier ensemble for class prediction from gene expression profiles

Language

English

Abstract

© 2014 IEEE. Multi-view learning, one of the important sub-fields in the area of machine learning, has gained more and more attention in class prediction of gene expression datasets. In this paper, we propose a new classifier ensemble framework, named as multi-view based Ad-a boost classifier ensemble framework (MV-ACE), which not only utilizes a random view generation technique to regulate different views and applies adaboost to adjust the training set, but also designs an adaptive process which explores the feasible combination of multiple views through an optimization process. Traditional multi-view learning focuses on exploring diverse views and the best integration of multiple views in a straight-forward manner, such as the linear combination of different views. Our proposed model, however, additionally applies a progressive training approach to improve the accuracies of the base classifiers. Moreover, we investigate the assembly of views at the model level, and employ an adaptive process to optimize the multi-view learning model to improve its performance. Our experiments on 12 cancer gene data sets for the classification task show that(i) MV-ACE works well on a diverse class of cancer gene expression profiles. (ii) It outperforms most of the state-of-the-art classifier ensemble approaches on these datasets.

Publication Date

2014

Source Publication Title

2014 22nd International Conference on Pattern Recognition (ICPR)

Start Page

178

End Page

183

Conference Location

Stockholm, Sweden

Publisher

IEEE

DOI

10.1109/ICPR.2014.40

Link to Publisher's Edition

http://dx.doi.org/10.1109/ICPR.2014.40

ISSN (print)

10514651

ISBN (print)

9781479952083

This document is currently not available here.

Share

COinS