Document Type

Journal Article

Department/Unit

Department of Chemistry

Title

Rapid assessment of the coenzyme Q(10) redox state using ultrahigh performance liquid chromatography tandem mass spectrometry

Language

English

Abstract

© the Partner Organisations 2014.An improved method for accurate and rapid assessment of the coenzyme Q10 (CoQ10) redox state using ultrahigh performance liquid chromatography tandem mass spectrometry was described, with particular attention given to the instability of the reduced form of CoQ10 during sample preparation, chromatographic separation and mass spectrometric detection. As highly lipophilic compounds in complex biological matrices, both reduced and oxidized forms of CoQ10 were extracted simultaneously from the tissue samples by methanol which is superior to ethanol and isopropanol. After centrifugation, the supernatants were immediately separated on a C18 column with isocratic elution using methanol containing 2 mM ammonium acetate as a non-aqueous mobile phase, and detected by positive electrospray ionization tandem mass spectrometry in multiple reaction monitoring (MRM) mode. Ammonium acetate as an additive in methanol provided enhanced mass spectrometric responses for both forms of CoQ10, primarily due to stable formation of adduct ions [M + NH4]+, which served as precursor ions in positive ionization MRM transitions. The assay showed a linear range of 8.6-8585 ng mL-1 for CoQ10H2 and 8.6-4292 ng mL-1 for CoQ10. The limits of detection (LODs) were 7.0 and 1.0 ng mL-1 and limits of quantification (LOQs) were 15.0 and 5.0 ng mL-1 for CoQ10H2 and CoQ10, respectively. This rapid extractive and analytical method could avoid artificial auto-oxidation of the reduced form of CoQ10, enabling the native redox state assessment. This reliable method was also successfully applied for the measurement of the CoQ10 redox state in liver tissues of mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin, revealing the down-regulated mitochondrial electron transport chain.

Publication Date

2014

Source Publication Title

Analyst

Volume

139

Issue

21

Start Page

5600

End Page

5604

Publisher

Royal Society of Chemistry

DOI

10.1039/c4an00760c

Link to Publisher's Edition

http://dx.doi.org/10.1039/c4an00760c

ISSN (print)

00032654

ISSN (electronic)

13645528

This document is currently not available here.

Share

COinS