Document Type

Journal Article

Department/Unit

Department of Biology

Title

Hepatic Proteomic Responses in Marine Medaka (Oryzias melastigma) Chronically Exposed to Antifouling Compound Butenolide [5-octylfuran-2(5H)-one] or 4,5-Dichloro-2-N-Octyl-4-Isothiazolin-3-One (DCOIT)

Language

English

Abstract

© 2015 American Chemical Society. The pollution of antifoulant SeaNine 211, with 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) as active ingredient, in coastal environment raises concerns on its adverse effects, including endocrine disruption and impairment of reproductive function in marine organisms. In the present study, we investigated the hepatic protein expression profiles of both male and female marine medaka (Oryzias melastigma) exposed to low concentrations of DCOIT at 2.55 μg/L (0.009 μM) or butenolide, a promising antifouling agent, at 2.31 μg/L (0.012 μM) for 28 days. The results showed that proteins involved in phase I (CYP450 enzyme) metabolism, phase II (UDPGT and GST) conjugation as well as mobilization of retinoid storage, an effective nonenzymatic antioxidant, were consistently up-regulated, possibly facilitating the accelerated detoxification of butenolide. Increased synthesis of bile acid would promote the immediate excretion of butenolide metabolites. Activation of fatty acid β-oxidation and ATP synthesis were consistent with elevated energy consumption for butenolide degradation and excretion. However, DCOIT did not significantly affect the detoxification system of male medaka, but induced a marked increase of vitellogenin (VTG) by 2.3-fold in the liver of male medaka, suggesting that there is estrogenic activity of DCOIT in endocrine disruption. Overall, this study identified the molecular mechanisms and provided sensitive biomarkers characteristic of butenolide and DCOIT in the liver of marine medaka. The low concentrations of butenolide and DCOIT used in the exposure regimes highlight the needs for systematic evaluation of their environmental risk. In addition, the potent estrogenic activity of DCOIT should be considered in the continued applications of SeaNine 211.

Publication Date

2015

Source Publication Title

Environmental Science and Technology

Volume

49

Issue

3

Start Page

1851

End Page

1859

Publisher

American Chemical Society

DOI

10.1021/es5046748

Link to Publisher's Edition

http://dx.doi.org/10.1021/es5046748

ISSN (print)

0013936X

ISSN (electronic)

15205851

This document is currently not available here.

Share

COinS