http://dx.doi.org/10.1145/2674559">
 

Document Type

Journal Article

Department/Unit

Department of Mathematics

Title

Low-rank modeling and its applications in image analysis

Language

English

Abstract

© 2015 ACM.Low-rank modeling generally refers to a class of methods that solves problems by representing variables of interest as low-rank matrices. It has achieved great success in various fields including computer vision, data mining, signal processing, and bioinformatics. Recently, much progress has been made in theories, algorithms, and applications of low-rank modeling, such as exact low-rank matrix recovery via convex programming and matrix completion applied to collaborative filtering. These advances have brought more and more attention to this topic. In this article, we review the recent advances of low-rank modeling, the state-of-the-art algorithms, and the related applications in image analysis. We first give an overview of the concept of low-rank modeling and the challenging problems in this area. Then, we summarize the models and algorithms for low-rank matrix recovery and illustrate their advantages and limitations with numerical experiments. Next, we introduce a few applications of low-rank modeling in the context of image analysis. Finally, we conclude this article with some discussions.

Keywords

Image analysis, Low-rank modeling, Matrix factorization, Optimization

Publication Date

2014

Source Publication Title

ACM Computing Surveys

Volume

47

Issue

2

Start Page

1900-01-01

End Page

1900-01-01

Publisher

Association for Computing Machinery

ISSN (print)

03600300

ISSN (electronic)

15577341

This document is currently not available here.

Share

COinS