Document Type

Journal Article

Department/Unit

Department of Chemistry

Title

Symmetric versus unsymmetric platinum(II) bis(aryleneethynylene)s with distinct electronic structures for optical power limiting/optical transparency trade-off optimization

Language

English

Abstract

A new series of symmetric and unsymmetric Pt(II)bis(acetylide) complexes of the type D-C≡C-Pt(PBu3)2-C≡C-D (D-Pt-D), A-C≡C-Pt(PBu3)2-C≡C-A (A-Pt-A) and D-C≡C-Pt(PBu3)2-C≡C-A (D-Pt-A) (D, donor groups; A, acceptor groups) are synthesized, and show superior optical power limiting (OPL)/optical transparency trade-offs. By tailoring the electronic properties of the aryleneethynylene group, distinct electronic structures for these metalated complexes can be obtained, which significantly affect their photophysical behavior and OPL properties for a nanosecond laser pulse at 532 nm. Electronic influence of the ligand type and the molecular symmetry of metal group on the optical transparency/nonlinearity optimization is thoroughly elucidated. Generally, aryleneethynylene ligands with π electronaccepting nature will effectively enhance the harvesting efficiency of the triplet excited states. The ligand variation to the OPL strength of these Pt(II) compounds follows the order: D-Pt-D > D-Pt-A > A-Pt-A. These results could be attributed to the distinctive excited state character induced by their different electronic structures, on the basis of the data from both photophysical studies and theoretical calculations. All of the complexes show very good optical transparencies in the visible-light region and exhibit excellent OPL responses with very impressive figure of merit σex/σovalues (up to 17), which remarkably outweigh those of state-of-the-art reverse saturable absorption dyes such as C60and metallophthalocyanines with very poor transparencies. Their lower optical-limiting thresholds (0.05) cm-2at 92% linear transmittance) compared with that of the best materials (ca. 0.07 ) cm-2for InPc and PbPc dyes) currently in use will render these highly transparent materials promising candidates for practical OPL devices for the protection of human eyes and other delicate electro-optic sensors. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA.

Publication Date

2009

Source Publication Title

Advanced Functional Materials

Volume

19

Issue

4

Start Page

531

End Page

544

Publisher

Wiley-VCH Verlag

DOI

10.1002/adfm.200800856

Link to Publisher's Edition

http://dx.doi.org/10.1002/adfm.200800856

ISSN (print)

1616301X

ISSN (electronic)

16163028

This document is currently not available here.

Share

COinS