Document Type

Journal Article

Department/Unit

Department of Chemistry

Title

Platinum-acetylide polymers with higher dimensionality for organic solar cells

Language

English

Abstract

A new series of platinum(II)-acetylide polymers P1-P3 containing thiophene-triarylamine chromophores of different dimensions were synthesized and their electronic band structures, field-effect charge transport, and application in bulk heterojunction solar cells were evaluated. These materials are soluble in polar organic solvents and show strong absorptions in the solar spectra (with the highest absorption coefficient of 1.59× 10 5cm-1 from thin films), thus rendering them excellent candidates for bulk heterojunction polymer solar cells. The spin-coated polymer thin films showed p-channel field-effect charge transport with hole mobilities of 1.90× 10-5 to 7.86× 10-5cm 2V-1s-1 for P1-P3 and an improved charge carrier transport was found for P2 with higher molecular dimensionality than P1. The dependence of their photovoltaic properties and dimensionality was also investigated. Even if the polymers possess relatively high bandgaps and narrow absorption bandwidths, the highest power conversion efficiency of 2.24% can be obtained based on blends of P3 with [6,6]phenyl-C61-butyric acid methyl ester (PCBM) (1:5, w/w) under AM1.5 simulated solar illumination. The present work indicates that multidimensional polymers exhibit a better photovoltaic performance over the linear polymers under the same measurement conditions and can provide an attractive approach to developing highly efficient conjugated metallopolymers for efficient power generation. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Keywords

dimensionality, fluorine, photovoltaics, platinum, polymers

Publication Date

2011

Source Publication Title

Chemistry - An Asian Journal

Volume

6

Issue

7

Start Page

1766

End Page

1777

Publisher

Wiley-VCH Verlag

DOI

10.1002/asia.201100111

Link to Publisher's Edition

http://dx.doi.org/10.1002/asia.201100111

ISSN (print)

18614728

ISSN (electronic)

1861471X

This document is currently not available here.

Share

COinS