Document Type

Journal Article

Department/Unit

Department of Physics

Title

Study of sequential dexter energy transfer in high efficient phosphorescent white organic light-emitting diodes with single emissive layer

Language

English

Abstract

In this study, we report our effort to realize high performance single emissive layer three color white phosphorescent organic light emitting diodes (PHOLEDs) through sequential Dexter energy transfer of blue, green and red dopants. The PHOLEDs had a structure of; ITO(1500Å)/NPB(700Å)/ mCP:Firpic-x%:Ir(ppy)3-0.5%:Ir(piq)3-y%(300Å)/TPBi(300Å)/Liq(20Å)/Al(1200Å). The dopant concentrations of FIrpic, Ir(ppy)3 and Ir(piq)3 were adjusted and optimized to facilitate the preferred energy transfer processes attaining both the best luminous efficiency and CIE color coordinates. The presence of a deep trapping center for charge carriers in the emissive layer was confirmed by the observed red shift in electroluminescent spectra. White PHOLEDs, with phosphorescent dopant concentrations of FIrpic-8.0%:Ir(ppy)3-0.5%:Ir(piq)3-0.5% in the mCP host of the single emissive layer, had a maximum luminescence of 37,810 cd/m2 at 11 V and a luminous efficiency of 48.10 cd/A at 5 V with CIE color coordinates of (0.35, 0.41).

Publication Date

2014

Source Publication Title

Scientific Reports

Volume

4

Start Page

7009

Publisher

Nature Publishing Group

ISSN (print)

20452322

ISSN (electronic)

20452322

This document is currently not available here.

Share

COinS