http://dx.doi.org/10.1002/rcm.4558">
 

Document Type

Journal Article

Department/Unit

Department of Chemistry

Title

Determination of triclosan metabolites by using in-source fragmentation from high-performance liquid chromatography/negative atmospheric pressure chemical ionization ion trap mass spectrometry

Language

English

Abstract

Triclosan is a widely used broad-spectrum antibacterial agent that acts by specifically inhibiting enoyl-acyl carrier protein reductase. An in vitro metabolic study of triclosan was performed by using Sprague-Dawley (SD) rat liver S9 and microsome, while the in vivo metabolism was investigated on SD rats. Twelve metabolites were identified by using in-source fragmentation from high-perform-ance liquid chromatography/negative atmospheric pressure chemical ionization ion trap mass spectrometry (HPLC/APCI-ITMS) analysis. Compared to electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) that gave little fragmentation for triclosan and its metabolites, the in-source fragmentation under APCI provided intensive fragmentations for the structural identifications. The in vitro metabolic rate of triclosan was quantitatively determined by using HPLC/ESI-ITMS with the monitoring of the selected triclosan molecular ion. The metabolism results indicated that glucuronidation and sulfonation were the major pathways of phase II metabolism and the hydroxylated products were the major phase I metabolites. Moreover, glucose, mercapturic acid and cysteine conjugates of triclosan were also observed in the urine samples of rats orally administrated with triclosan. © 2010 John Wiley & Sons, Ltd.

Publication Date

2010

Source Publication Title

Rapid Communications in Mass Spectrometry

Volume

24

Issue

13

Start Page

1828

End Page

1834

Publisher

Wiley

ISSN (print)

09514198

ISSN (electronic)

10970231

This document is currently not available here.

Share

COinS