http://dx.doi.org/10.1021/cg9009724">
 

Document Type

Journal Article

Department/Unit

Department of Chemistry

Title

Synthesis and wavelength-tunable luminescence property of wurtzite ZnxCd1−xS nanostructures

Language

English

Abstract

High-quality nanostructured ZnxCd1-xS has been synthesized through a method of two-step thermal evaporation. The typical morphologies of the nanomaterials were investigated by SEM and TEM. The first step of synthesis is the preparation of ZnS nanoribbons. With ZnS nanoribbons being used as templates, a series of wurtzite ZnxCd1-xS (x = 0.47, 0.70, 0.77, 0.85, and 0.94) nanobelts can be produced. Furthermore, by adopting ZnS nanoribbons of a particular width, ZnxCd1-xS nanobelts of a desired width can be fabricated. In XRD analysis, we find that with an increase in Zn content (x), the peaks corresponding to the wurtzite structures shift to larger 26. As a deduction based on Vegard's law, the Zn xCd1-xS are solid solutions of similar crystal structure. The results of HRTEM and SAED investigations reveal that the ZnS nanoribbons and ZnxCd1-xS nanobelts grow along the (1010) direction. With an increase in Zn content, we observe a gradual blue shift of photoluminescence emission (from 443 to 352 nm), further indicating the homogeneity of the ZnxCd1-xS solid solutions. After proper thermal annealing, there is better crystallinity of ZnxCd1-xS and higher specificity of near-band emission. © 2009 American Chemical Society.

Publication Date

2009

Source Publication Title

Crystal Growth and Design

Volume

9

Issue

11

Start Page

4602

End Page

4606

Publisher

American Chemical Society

ISSN (print)

15287483

ISSN (electronic)

15287505

This document is currently not available here.

Share

COinS