Document Type

Journal Article

Department/Unit

Department of Chemistry

Title

Mass spectrometric identification of water-soluble gold nanocluster fractions from sequential size-selective precipitation

Language

English

Abstract

This paper presents a simple and convenient methodology to separate and characterize water-soluble gold nanocluster stabilized with penicillamine ligands (AuNC-SR) in aqueous medium by sequential size-selective precipitation (SSSP) and mass spectrometry (MS). The highly polydisperse crude AuNC-SR product with an average core diameter of 2.1 nm was initially synthesized by a one-phase solution method. AuNCs were then precipitated and separated successively from larger to smaller ones by progressively increasing the concentration of acetone in the aqueous AuNCs solution. The SSSP fractions were analyzed by UV-vis spectroscopy, matrix-assisted laser desorption/ionization time-of-flight-MS, and thermogravimetric analysis (TGA). The MS and TGA data confirmed that the fractions precipitated from 36, 54, 72, and 90% v/v acetone (F 36%, F 54%, F 72%, and F 90%) comprised families of close core size AuNCs with average molecular formulas of Au 38(SR) 18, Au 28(SR) 15, Au 18(SR) 12, and Au 11(SR) 8, respectively. In addition, F 36%, F 54%, F 72%, and F 90% contained also the typical magic-sized gold nanoparticles of Au 38, Au 25, Au 18, and Au 11, respectively, together with some other AuNCs. This study shed light on the potential use of SSSP for simple and large-scale preliminary separation of polydisperse water-soluble AuNCs into different fractions with a relatively narrower size distribution. © 2011 American Chemical Society.

Publication Date

2012

Source Publication Title

Analytical Chemistry

Volume

84

Issue

3

Start Page

1765

End Page

1771

Publisher

American Chemical Society

DOI

10.1021/ac2029908

Link to Publisher's Edition

http://dx.doi.org/10.1021/ac2029908

ISSN (print)

00032700

ISSN (electronic)

15206882

This document is currently not available here.

Share

COinS