Document Type

Journal Article

Department/Unit

Department of Chemistry

Title

Selective recognition of arsenic by tailoring ion-imprinted polymer for ICP-MS quantification

Language

English

Abstract

A novel arsenic-ion imprinted polymer (As-IIP) was firstly synthesized for the separation and recovery of trace elemental As from environmental water samples. Polymers prepared from bifunctional monomers with intrinsic metal-binding capability are a platform for tailoring ion-selectivity via imprinting moiety-template interaction, without complex formation and ligand immobilization. In the present study, As-IIPs based on 1-vinylimidazole, 4-vinylpyridine and styrene were designed to investigate the imprinting mechanism in relation to their structural and functional properties. In terms of selectivity as well as imprinting effects compared with the non-imprinted polymer (NIP), 1-vinylimidazole-based As-IIP exhibited superior analyte recognition for As ion among 23 competing elements, with a 25-fold enhancement in the practical dynamic and static adsorption capacity range (0.048-4.925 μmol g -1). The robust As-IIP sorbent features good reusability up to 20 cycles and a wide working pH 5-7 for a firstly reported solid-phase extraction (SPE) application. As a result of selective sample clean-up, As-IIP-SPE offered limits of detection (LOD) and quantification (LOQ) down to 0.025 and 0.083 μmol L -1, respectively, for environmental sample analysis using inductively coupled plasma-mass spectrometry. © 2011 Elsevier B.V. All rights reserved.

Keywords

Arsenic, Inductively coupled plasma-mass spectrometry, Ion recognition, Ion-imprinted polymer, Solid-phase extraction

Publication Date

2012

Source Publication Title

Talanta

Volume

89

Start Page

162

End Page

168

Publisher

Elsevier

DOI

10.1016/j.talanta.2011.12.007

ISSN (print)

00399140

ISSN (electronic)

18733573

This document is currently not available here.

Share

COinS