http://dx.doi.org/10.1002/jemt.20758">
 

Document Type

Journal Article

Department/Unit

School of Chinese Medicine

Title

A novel and effective multistage classification system for microscopic starch grain images

Language

English

Abstract

This article presents a novel and effective multistage system for classifying Chinese Materia Medica microscopic starch grain images. The proposed classification system is constructed based on the Gaussian mixture model-based clustering, the feature assignment algorithm, and the similarity measurement. Several features for each starch grain image are extracted and every class of drug is represented by a set of characteristic features. For each stage of the system, only one feature is chosen and assigned to that stage via the feature assignment algorithm, and the corresponding characteristic features are subdivided into smaller subsets based on clustering techniques. At the final stage, each subset contains a certain class of drugs (with corresponding characteristic features) and similarity measurement is carried out for starch grain classification. Three sets of the current state-of-the-art starch grain features including the granulometric size distribution, the chord length distribution, and the wavelet signature are used to construct the system. Experimental results on a database of 240 images of 24 classes of drugs reveal the superior performance of the multistage system. Comparison with the traditional starch grain classification approaches indicates that our proposed multistage method produces a marked improvement in classification performance. © 2009 Wiley-Liss, Inc.

Keywords

Akaike's information criterion, Chinese Materia Medica, Gaussian mixture model, Microscopic classification, Multistage classification, Similarity measurement, Starch grains

Publication Date

2010

Source Publication Title

Microscopy Research and Technique

Volume

73

Issue

1

Start Page

77

End Page

84

Publisher

Wiley

ISSN (print)

1059910X

ISSN (electronic)

10970029

This document is currently not available here.

Share

COinS