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Optimality of the Method of Fundamental
Solutions

Kwun Ying Wong* Leevan Ling* T

Abstract

The Effective-Condition-Number (ECN) is a sensitivity measure for a lin-
ear system; it differs from the traditional condition-number in the sense that
the ECN is also right-hand side vector dependent. The first part of this work,
in [EABE 33(5) pp.637-643], revealed the close connection between the ECN
and the accuracy of the Method of Fundamental Solutions (MFS) for each
given problem. In this paper, we show how the ECN can help achieve the
problem-dependent quasi-optimal settings for MFS calculations—that is,
determining the position and density of the source points. A series of exam-
ples on Dirichlet and mixed boundary conditions shows the reliability of the
proposed scheme; whenever the MFS fails, the corresponding value of the
ECN strongly indicates to the user to switch to other numerical methods.

1 Introduction

The Method of Fundamental Solutions (MFS) is a popular numerical method for
solving homogeneous boundary value problems. For simplicity, our presentation is
restricted to the homogeneous Poisson problem

Au = 0 inQCR? (1)
Oy = fi onTyC o, ke {01},

where the operator 0, is the outward-normal derivative, 'y UT'y =09, I'yNI; =
() # T'y, and in this paper, the functions fy and f; are called the boundary data

Preliminary Draft — File: EffCond5 REV'EABE.tex — Not For Distribution.
(© All rights reserved to the authors. Generated by IWTEX on June 15, 2010.

*Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
fCorrespondence to L. Ling (E-mail: 11ing@hkbu.edu.hk)
Key words and phrases. Effective-condition-number, Laplace equation, MFS



functions which are used to generate boundary data. The MFS, belonging to a
special class of Trefftz Methods [17, 18], approximates the solution of the boundary
value problem (1) by linear combinations of fundamental solutions centered at
source-points located outside the domain of interest. Unknown coefficients are
sought to best-fit the boundary data with the singularities not ever going into the
domain €2; this is done usually by collocation but other weak-formulations work
too. The applications of the MF'S are very wide: from linear problems [7, 15, 31],
to nonlinear equations [1, 3|, and to inverse problems [4, 30]. Thorough surveys
on the MFS can be found in [6, 9].

Recent research on the MF'S is extensive and it is commonly believed that the
MFS can always achieve highly accurate solution up to the order of machine pre-
cision. Recently, Schaback [27] made the following observation. It is usually due
to convenience that many researchers choose harmonic functions to be boundary
data functions for verifying the accuracy of the MFS; that is, both Afy = 0 and
fi = Onfy hold in R%2. With these globally-harmonic boundary data functions,
the MFS calculations are always stable and its results are always accurate; both
facts hold independently of the shape of €). Moreover, using harmonic polynomial
approximations will do even better than the MFS in such situations. Many ap-
plications in engineering and science give rise to boundary data functions which
are “not-that-nice.” For example, the boundary control method in [23] gives sub-
problems with fy being fundamental solutions but f; = 0. This either means the
solution to (1) has a finite harmonic-extension outside the domain ) or, in the
serious situations, the solution or one of its derivatives has a singularity on the
boundary 0€2. All these facts do not make the MFS impractical, but one needs to
be more cautious when employing the method. The solution provided in [27] is an
adaptive algorithm that selects an appropriate basis (either a fundamental solution
or a harmonic polynomial) iteratively. The algorithm there is one variation of the
greedy algorithms for asymmetric meshless collocation methods [12, 14, 22, 20, 21]
and it shares some common features to the matching-pursuit algorithm [25] for
image processing. The full details are omitted here and we are going to present
another alternative from a very different approach.

2 MFS Linear Systems and ECN

Let Q O Q be the fictitious domain. The set-up of the MFS linear system often
involves placing a set of M collocation points X = {xy,..., 2y} on the domain
boundary and a set of IV source points = = {{;,...,&x} on the fictitious boundary



9. The MFS approximates the solution of (1) by

s(x) = ap + Zaisj(x), z € Q. (2)

We now have enough information to set-up an M x N linear system

N
Qo + Z CKij(.TZ') = fo(l'i), for T; € Fo.
v (3)
Z ozj(?nsj(xi) = f1($i), for x; € Fl-
j=1

For the Poisson problem we considered, the fundamental solution centered at the
source point §; € = is given as

sj(@) = logllz — &Iz,

for + € R% Depending on the values of M and N, the linear system (3) can
be a linear unsymmetric over— or underdetermined M x N system of the form
Aa = b. After obtaining the unknown coefficients, the MFS approximation can
be evaluated anywhere inside the fictitious domain by (2). The above procedure
can be easily generalized to other types of differential equations simply by using
the appropriate the fundamental solutions; see [13].

It is not difficult to see why the traditional condition number cannot be a
good indicator for the MFS accuracy. The coefficient matrix A depends on the
fundamental solution (i.e. the differential equation itself), and the placement of
the source points and collocation points (= and X); whereas the right-hand side
vector b depends on the boundary shape, the location of the collocation points
and most importantly, the boundary data functions. From [27], we know that the
boundary data functions have a critical influence on to the MFS accuracy. The
traditional condition number, independent of the boundary data functions, cannot
provide the desired information. The Effective-Condition-Number (ECN), denoted
by ket = Ke(A, D), is a sensitivity measure for the linear system rather than for
the matrix. Namely, for Ao = b, we have

|Aa] |Adf| . L lo]
< Reff——— With Keg := ————, (4)
lev] 1] O nin |l
where o, denotes the smallest nonzero singular value of A and if A is singular,

solutions to linear systems (a and A«) are obtained by the standard pseudoinverse
formula.



In our first investigation [5], the following connection between the ECN and
the accuracy of MFS was observed:

(L% error of MFS) x (ECN of the MFS linear system) = O(1). (5)

The numerical experiments presented in [5], however, were rather preliminary:
we did not include the constant basis in the expansion (2) and, for simplicity,
we focussed on exact-determined system (M = N) in [5] only. We discovered
later that the Accuracy-ECN relationship (5) not only holds for all situations in
the MF'S calculations (exact-, over-, and underdetermined) but also for a closely
related method-the Boundary Knot Method [8, 29]. Readers are also referred to
[16, 19] for the recent development of the MF'S and ECN.

3 Optimizing the MFS Setting

Using the ECN in (4) to optimize the MF'S setting has a clear advantage over using
only boundary data [10]; that is, problems with Neumann or mixed boundary
conditions can now be handled even though all or part of the Dirichlet data are
missing. Looking for the true optimal setting for the MFS is an NP-hard (non-
deterministic polynomial-time hard) problem. In some early applications of the
MFS, the sources were taken to be part of the unknowns [11, 24]. More recent
paper related to the optimal placement of the sources can be found in [2]. To
overcome this, we have to impose some constraints. This restricts the search to a
more practical way and allows us to search for a quasi-optimal setting for the MFS.
First of all, the number of collocation points used, M, should be sufficiently large
but fixed. The next constraint is that the fictitious boundary varies according
to some predefined formulas. For example, if 0f) is given in polar by r = r(6),
then the fictitious domain can be constructed by r = D + r(0) with the distance
between the domain boundary and the fictitious boundary denoted by D. Users
often use a circular fictitious domain with radius D regardless of the shape of €).
In either case, the parameter D is what we try to optimize. Next, the set of N
source points are distributed on the fictitious boundary according to some rules
of distribution (i.e. uniformly). This allows us to search for the optimal N on a
given fictitious domain.

From the Accuracy-ECN relationship (5), if we want to minimize the MFS
error, the corresponding ECN should be maximized. Equivalently, we can recast
the optimization problem as minimizing the inverse of the ECN. Under the imposed
constraints, the N-Search and D-Search can be casted, respectively, as

N-Search: m]\ifn Keff (A, b), with  fixed, (6)
D-Search: mDin ket (A,b), with N fixed. (7)

4



In both searches, only one of the parameters (N and D) is treated as a scalar
variable. The objective functions are scalar functions returning the ECN as out-
put. Since the coefficient matrices are often ill-conditioned, we found that both
objective functions are nonsmooth and hence (quasi-) gradient-based methods are
not suitable for our optimization problems. Instead of the exhausting brute-force
systematic search, we will employ the golden section search by providing lower-
and upper-bounds to N and D.

Performing either one of the optimizations (6) or (7) requires fixing the other
parameter a priori. To perform the N-Search, we need to fix a D and therefore the
fictitious domain; and vice versa. To make our quasi-optimal selection closer to
the real one, a sequential search can be performed. In this paper, we only consider
the three-step searching processes, that is a DN D-Search. With a relative small
number of source points, the D-Search is faster and more importantly, experience
tells us that the distance of the sources is a more important factor. It makes sense
to run it twice in order to guarantee optimality. The idea of optimal setting, with
no doubt, imposes a large overhead on the MFS. However, the MF'S linear systems
are relatively small and easy to solve. Combined with ECN, the optimized MFS
becomes a more reliable subroutine for more sophisticated problems, e.g. improve
the MF'S subroutine in the construction of reduced basis [28].

4 Numerical Examples

To illustrate the accuracy of the proposed DN D-Search procedure, we now proceed
with a series of numerical demonstrations. All boundaries considered are gener-
ated by a polar function r such that 92 = {(r,0) : r =1r(f), 0 <6 < 2r}. The
corresponding fictitious boundary 9 is then constructed by r = r(6)+ D where D
is the source distance to be optimized. The collocation systems are obtained using
numerical expansion (2) with NV (M) source points (collocation points) uniformly
distributed with respect to the f-variable on 9§ (8). Unless otherwise mentioned,
we start the first D-Search with N = 100 and a fixed number of collocation points
M = 400. This means that the over-, exact-, underdetermined settings are being
considered in the N-Search. The accuracy is measured either in L>(92) or L*(),
respectively, for the €., and e, errors; the former e, is approximated at 1000
evaluation points on the boundary and is mostly used in examples with Dirichlet
boundary conditions. The latter 5, used in examples with mixed boundary con-
ditions or discontinuous Dirichlet boundary conditions, is approximated with the
fraction of discrete 2-norms; i.e., norm of residual in the numerator and norm of
the exact function values in the denominator. The numbers of evaluation points
used for approximating the L?(€) errors will be reported for each care separately.

For the sake of comparison, we start by considering the examples in [27]. The



T

1t -

-1.5 -1 -0.5

Figure 1: MFES set-up yielded from the DN D-Search for boundary data
function fo(x,y) = exp(x)cos(y) on a lemniscate domain.

first example comes with a globally-harmonic boundary Dirichlet-data function
fo(z,y) = exp(z)cos(y) on a lemniscate domain with an incoming corner, see
Figure 1. Understanding the mathematical issues suggested by Schaback, one can
see that this example is trivial and highly-accurate-results are almost guaranteed
independent of the MFS set-up. Our search procedure produced €., = 5.55F — 15
using quasi-optimal parameters D, = 0.6633 and N, = 400. This yields a
slightly underdetermined 400 x 401 system (because of the constant basis in the
expansion). This is the type of popular test function used in many research papers—
we emphasize once again that it is harder to get bad results than good ones here.

Under the same situation, the second example considers a smooth, but not
harmonic, boundary data function fo(z,y) = z?y®. With D,y = 0.8622 and
Nopt = 156, the optimized MF'S yields error e, = 4.07E — 5. The loss of ten-digits
of accuracy is due to the incoming corner of the lemniscate. If the lemniscate is
replaced by the unit circle, the optimal MFS yields an error ., = 5.02F — 15
instead.

If readers compare our results in the first two examples, our proposed DN D-
Search slightly outperforms harmonic polynomials and the adaptive greedy tech-
niques reported in [27] by one or two orders of magnitude. We now consider their
last example with a non-smooth boundary data function fy(z,y) = max(0, |y|) on
the unit circle. Our search yields D,,; = 0.1950 that is much smaller than that in
the previous examples. With N, = 410 source points, the error €., = 1.31E — 3
is close to but not as good as the results of harmonic polynomials.

As mentioned before, the power of the proposed optimization scheme lies in the
fact that it can be applied to situations in which the maximum-principle cannot



M = 200
Start-NV H Do ‘ Nopt ‘ ECN H Eoo 0N OF) ‘ g9 on §2
50 1.459E-1 | 202 | 7.28E+16 || 8.18E-3 | 8.11E-5
100 3.819E-1 | 346 | 1.09E+13 || 6.17E-3 | 6.56E-5
150 2.372E-1 | 198 | 3.76E+15 || 5.63E-3 | 5.70E-5
200 2.309E-1 | 200 | 2.41E+15 || 6.86E-3 | 6.85E-5
M = 400
Start-NV H Doy ‘ Nopt ‘ ECN H Eoo 0N OF) ‘ g9 on §2
50 5.563E-2 | 402 | 9.73E+16 | 6.23E-3 | 2.95E-5
100 2.360E-1 | 396 | 1.98E+14 || 2.76E-3 | 1.69E-5
150 7.270E-2 | 398 | 6.95E+16 || 6.01E-3 | 3.04E-5
200 1.605E-1 | 388 | 3.17TE+15 || 2.74E-3 | 1.69E-5
Table 1: DN D-Search results with different starting numbers of source

points N.

be applied. One such situation is for mixed boundary conditions. Consider ) =
[—1,1]? with T'; being the top boundary and the other three being I'y, respectively,
for imposing the Neumann and Dirichlet boundary conditions. We took fo(z,y) =
log((x —2)*+ (y — 2)?) and fi(z,y) = 0 as boundary data functions. To overcome
the missing Dirichlet data on I'y, the problem is solved using the finite element
method (FEM) with 40257 nodes at which we evaluate the L?(€)) error &5. In Table
1, we demonstrate the robustness of the DN D-Search with different starting values
of N and different numbers of collocation points M. A sample error distribution
is also shown in Figure 2. Note also that the first D-Search is actually faster
with smaller starting N. Moreover, the obtained optimal settings with different
starting N are different. The quasi-optimal selections (distance D,,; and numbers
N,y of source points) vary from case-to-case. Rather than finding a fixed set-up
the proposed search algorithm shows its robustness in terms of consistent accuracy.
Note that the optimal number of sources tends to be very close to the number of
collocation points. For efficiency, it is interesting to study if a single pass D-search
on exact-determined settings is sufficient.
The last and most challenging example took the exact solution
2 2y

u(x,y) = — arctan

T 1 — 22 —y?’

see Figure 3. It is a straightforward exercise to verify that u is harmonic only
inside the unit circle and is discontinuous on the boundary. Readers can find more
Laplace equations with singular solutions in [26].

To avoid the singularity, a scaled version of u with (x, y) replaced with (x,y)/(1+
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Figure 2: Error distribution against the log-absolute error; Neumann bound-
ary condition is imposed to the TOP boundary 'y, Dirichlet to the rest.

u(x.y)

Figure 3: Plot of u(x,y) = 2 arctan kﬁ%yQ on the unit circle.
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Figure 4: Error distribution against the log-absolute error; Dirichlet bound-
ary condition is imposed on OS).

10719) is used to generate boundary data. We consider two cases: first, [y =
0, Ty =0, and then Ty = 0Q N {y < 0}, T'; = 92 N {y > 0}, respectively, for
Dirichlet and mixed boundary conditions. In both cases, if not set-up properly,
the MFS approximation will be severely polluted by Gibbs oscillations.

Since the exact solution is discontinuous on boundary, it is not possible to
observe convergence in terms of €. Instead, the error e, is evaluated with 40257
nodes. With Dirichlet boundary data only, the proposed search yields e, = 5.52F —
3; for instance, see Figure 4 for the corresponding error distribution. Away from
the two jumps on boundary, the residual stays small rather uniformly inside the
domain. For the mixed boundary condition case, we get ¢ = 3.62F — 2. From
the error distribution in Figure 5, the reconstruction error gradually increases as
we go towards the Neumann boundary.

5 Conclusion

We proposed a search algorithm to seek for a quasi-optimal setting for the method
of fundamental solutions. The parameters to be searched are the number of source
points and the source distances. A series of examples—including globally har-
monic functions and discontinuous functions, and Dirichlet and mixed boundary
conditions—are provided. These examples show the robustness of the proposed
method. Also they provide a useful source of nontrivial test examples for re-
searchers in the area.



Figure 5: Error distribution against the log-absolute error; Neumann bound-
ary condition is imposed to the TOP semucircle 1"y, Dirichlet to the rest.
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