Extending associative network theory: the role of affect in the bi-directional image transfer process

Aishwarya Paliwal
Hong Kong Baptist University

Follow this and additional works at: https://repository.hkbu.edu.hk/etd_oa

Recommended Citation
Paliwal, Aishwarya, "Extending associative network theory: the role of affect in the bi-directional image transfer process" (2014). Open Access Theses and Dissertations. 44.
https://repository.hkbu.edu.hk/etd_oa/44

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at HKBU Institutional Repository. It has been accepted for inclusion in Open Access Theses and Dissertations by an authorized administrator of HKBU Institutional Repository. For more information, please contact repository@hkbu.edu.hk.
Extending Associative Network Theory: The Role of Affect in the Bi-directional Image Transfer Process

PALIWAL, Aishwarya

A thesis submitted in partial fulfilment of the requirement for the degree of

Doctor of Philosophy

Principal Supervisor: Prof. Gerard P. PRENDERGAST

Co-Supervisor : Dr. Henry FOCK

Hong Kong Baptist University

August 2014
DECLARATION

I hereby declare that this thesis represents my own work which has been done after registration for the degree of PhD at Hong Kong Baptist University, and has not been previously included in a thesis, dissertation submitted to this or other institution for a degree, diploma or other qualification.

Signature: __________________
Name: (Aishwarya Paliwal)
Date: August 2014
ABSTRACT

Marketers make extensive use of sponsorship as an instrument to build and enhance corporate image, with global sponsorship spending exceeding USD50 billion in 2012 (IEG, 2013). This growth in sponsorship spending has been paralleled by growth in sponsorship research. The various definitions of sponsorship are centred on the concept that the sponsor pays in return for the opportunity to be associated with the given event. The transfer of image from the event to the brand is therefore central to the productivity of any sponsorship arrangement. Hence, it is unsurprising that image transfer models in which the transfer takes place from the event to the sponsor’s brand are prevalent in the literature.

Whilst providing a good foundation, the extant sponsorship research has several shortcomings. For example, it is generally based on a unidirectional image transfer process, and the underlying mechanism of image transfer is attributed primarily to associative network theories (which, on their own, do not answer the why and how of the image transfer process). Further, most discussions in this arena use attitudinal change and the ability to recall as proxies for the existence of image transfer rather than measuring it directly. We know that events are largely thematic and engage the audience at an emotive level, but the sponsorship literature contains no studies on the role of affect in image transfer. Associative theories, whose roots lie in cognitive psychology, concern propositions, cues and outcomes, and yet they remain peripheral and largely ignored in the sponsorship literature. Observation also suggests that event-brand sponsorship arrangements are highly complex and susceptible to reciprocal image transfer.

This research addresses these shortcomings by using prior affect as the central mechanism to extend associative network theories to the sponsorship context. The central argument of this thesis is that a necessary condition for any image transfer to occur (event to brand or brand to event) is the absence of directly formed prior affect for the brand (in the case of conventional image transfer)/event (in the case of reverse image transfer). In the presence of directly formed prior affect, the association between event image and brand image is blocked, and no image transfer occurs.

A series of pretests and experiments provide empirical evidence to show that image transfer is a bi-directional phenomenon, cue directionality strengthens image transfer, the presence or absence of directly formed prior affect for the brand (event) determines whether image transfer occurs, the method of affect formation (neutral affect or indirect affect) moderates transfer strength, and image transfer from event to brand and from brand to event is asymmetrical. The limitations and theoretical implications of the research are discussed, and future research directions proposed.
ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, Prof. Gerard Prendergast, for his guidance and enduring patience and for pushing me to stretch myself to my limits, putting up with my idiosyncrasies, providing support and encouragement throughout the past three years and, above all, for having unwavering confidence in my ability to fulfil my dream of becoming a scholar. From the very beginning, he believed in this research and saw its potential for furthering our understanding of image transfer.

I would also like to thank Dr Henry Fock, my co-supervisor, for his insightful comments and suggestions, which have been absolutely critical and valuable in improving this research at every step. Without his rigorous approach, I would not have been able to narrow the scope of the experiments to ensure the deliverables were met in the allocated time and with the given resources.

The past three years have been a journey with many ups and downs, and my rock throughout it all has been my family – my husband, my two little children and my mother. Undertaking a PhD is never easy, and requires unwavering confidence, dedication and support from one’s closest. My young children understood what accomplishing this research meant to me, and they provided me with all of the time and space I needed.
This PhD thesis is dedicated to my father, Mr Shankar Tayal. I love you, Daddy, and I know that your love and blessing are always with us.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. iv

TABLE OF CONTENTS.. vi

LIST OF APPENDICES... ix

LIST OF FIGURES.. x

LIST OF TABLES.. xi

CHAPTER 1: INTRODUCTION AND OVERVIEW OF THESIS................................. 1
 1.1 Introduction... 1
 1.2 Background of the study... 3
 1.2.1 Image transfer.. 6
 1.3 Research objective... 12
 1.4 Theoretical contributions.. 13
 1.5 Structure of the thesis... 16

CHAPTER 2: THEORETICAL BACKGROUND... 18
 2.1 Sponsorship... 18
 2.2 Image transfer... 20
 2.3 Associative network theories and role of cue direction.................................... 25
 2.4 Role of affect... 29

CHAPTER 3: RESEARCH QUESTIONS, HYPOTHESES AND CONCEPTUAL FRAMEWORK.. 38
 3.1 Research question formulation.. 38
 3.2 Research questions.. 40
 3.3 Image transfer is bi-directional ... 41
 3.4 Directly formed prior affect .. 43
 3.5 Indirectly formed prior affect .. 45
 3.6 Asymmetrical image transfer .. 47
 3.7 Research model... 49

CHAPTER 4: METHODOLOGY... 52
 4.1 Research design.. 52
 4.2 Research approach.. 53
 4.2.1 Quantitative versus qualitative research... 53
 4.2.2 Primary versus secondary research... 54
 4.2.3 Inductive versus deductive research... 55
4.3 Data collection .. 55
4.4 Quality criteria ... 56
 4.4.1 Reliability and generalisability .. 56
 4.4.2 Validity .. 58
 4.4.2.1 Threats to internal validity ... 58
 4.4.2.2 Threats to external validity .. 59
4.5 PRETESTS .. 62
 4.5.1 Pretest-1 .. 62
 4.5.2 Pretest-2 .. 65
4.6 Image transfer operationalisation .. 68
4.7 EXPERIMENTS ... 69
 4.7.1 Experiment-1 .. 69
 4.7.2 Experiment-2 .. 74
 4.7.3 Experiment-3 ... 76

CHAPTER 5: ANALYSIS AND RESULTS .. 80
 5.1 Introduction ... 80
 5.2 Sampling and sampling error .. 80
 5.3 Demographic characteristics ... 80
 5.3.1 Gender Demographics .. 81
 5.3.2 Age profile ... 82
 5.3.3 Nationality ... 82
 5.3.4 Demographic effect on image transfer .. 83
 5.4 Assessing reliability and validity .. 84
 5.4.1 Reliability .. 84
 5.4.2 Validity .. 87
 5.4.2.1 Content validity .. 87
 5.4.2.2 Construct validity ... 87
 5.5 Pretests .. 89
 5.5.1 Selection of popular brand/event .. 89
 5.5.2 Selection of neutral brand/event ... 90
 5.5.3 Selection of attributes .. 92
 5.5.4 Selection of affective stimuli .. 94
 5.5.5 Reliability analysis of cue direction .. 95
 5.6 Experiment-1 ... 96
 5.6.1 Manipulation check ... 98
 5.6.2 Image transfer and reverse image transfer ... 101
 5.6.3 Role of cue direction on image transfer process 103
 5.6.4 Role of affect on image transfer process ... 108
 5.7 Experiment-2 ... 114
 5.8 Experiment-3 ... 118
 5.8.1 Manipulation check: Re-evaluation of the affective stimuli 118
 5.8.2 Blocking of event image transfer to brand .. 119
 5.8.3 Blocking of brand image transfer to event .. 125

CHAPTER 6: DISCUSSION AND THEORETICAL IMPLICATIONS 132
 Discussion of hypothesis testing results .. 132
LIST OF APPENDICES

Appendix 1: Experiment-1 - Treatment Scenarios .. 166
Appendix 2: Experiment-1 – Experimental Group Combinations 167
Appendix 3: Experiment-2 – Treatment Scenarios .. 168
Appendix 4: Experiment-2 – Experimental Group Combinations 168
Appendix 5: Experiment-3 – Treatment Scenarios .. 169
Appendix 6: Experiment-3 – Treatment Groups ... 170
Appendix 7: Scale Items of 3 Popular Brands ... 171
Appendix 8: Scale Items of 3 Popular Events ... 172
Appendix 9: List of Fictitious brands, Events and Affective Stimuli
Numbers .. 173
Appendix 10: Scale of Attributes for Affective Stimuli for Event 174
Appendix 11: Scale of Attributes for Affective Stimuli for Brand 175
Appendix 12: Scale Items for Affective Stimuli and Affective Stimuli Re-
evaluation .. 176
Appendix 13: Cue Direction Manipulation Check ... 177
Appendix 14: Wafi Brand Name – Univariate Test on Demographics 180
Appendix 15: IPL T-20 Event Name – Univariate Test on Demographics181
LIST OF FIGURES

Figure 1: Research Model.. 50
Figure 2: Pretest-1 Flowchart ... 63
Figure 3: Pretest-2 Flowchart ... 66
Figure 4: Experiment-1 Flowchart .. 70
Figure 5: Experiment-1 Conditioning with Indirect Affect .. 71
Figure 6: Indirect and Direct Affect Conditioning Procedure .. 72
Figure 7: Experiment-1 Combinations .. 73
Figure 8: Experiment-2 Combinations .. 75
Figure 9: Strength of Image Transfer from Event to Brand with Cue Direction to Brand .. 105
Figure 10: Strength of Image Transfer from Event to Brand with Cue Direction to Brand .. 105
Figure 11: Strength of Reverse Image Transfer from Brand to Event with Cue Direction to Event .. 107
Figure 12: Strength of Reverse Image Transfer from Brand to Event with Cue Direction to the Event .. 108
Figure 13: Type of Affect and Image Transfer to Brand .. 110
Figure 14: Type of Affect and Image Transfer to Event .. 111
Figure 15: Indirect affect and Image Transfer to Brand .. 112
Figure 16: Indirect affect and Image Transfer to Event .. 112
Figure 17: Asymmetrical Image Transfer .. 116
Figure 18: Image Transfer to Brand for the Four Treatment Conditions 124
Figure 19: Image Transfer to Event for the Four Treatment Conditions 129
LIST OF TABLES

Table 1: Blocking Experimental Procedure...77
Table 2: Experiment-3: Gender Demographics...82
Table 3: ANOVA - Demographics..83
Table 4: Reliability Statistics..84
Table 5: Test for Unidimensionality of Affect for Brand/Event Name Scale...85
Table 6: Test for Unidimensionality of Affective Stimuli Scale...............................85
Table 7: Test for Unidimensionality of Cue Directionality Scale...............................86
Table 8: Cronbach’s Alphas and Means: Pretest of Event and Brand Names..89
Table 9: Pretest: Descriptive Statistics for Brand Name Selection..........................90
Table 10: Pretest: Descriptive Statistics for Event Name Selection.........................91
Table 11: Pretest: FWC Attribute Selection by PCA...93
Table 12: Pretest: Gucci Attribute Selection by PCA...94
Table 13: Cue Direction Reliability..95
Table 14: Cross-tabulation: Dependent Variable (Image Transfer) and Affect...97
Table 15: Cross-tabulation: Dependent Variable (Image Transfer) and Cue Direction...97
Table 16: Cross-tabulation: Affect and Cue Direction...98
Table 17: ANOVA- Image x cue..102
Table 18: Means and SDs of bi-directional image transfer....................................103
Table 19: ANCOVA Results for Asymmetrical Image Transfer..............................117
Table 20: Experiment-3 Grouping..120
Table 21: Experiment-3: Image Transfer to Brand between Treatment Groups (p-values)..123
Table 22: Experiment-3: Image Transfer to Event between Treatment Groups (p values)..128
Table 23: Summary of Blocking of Brand/Event Image. .. 131
1.1 Introduction

Sponsorship has become a major marketing communication tool, with global spending expected to exceed USD53 billion in 2013 (IEG, 2013). Marketers make extensive use of sponsorship as an instrument to build, enhance or change their corporate and brand image, which is unsurprising given the restrictions and regulations surrounding the advertising of a number of products (e.g. alcohol and tobacco). Marketers thus use sponsorship as an alternate means to reach their target audience. However, the growth in sponsorship is not restricted to these organizations. It is widespread and encompasses all sponsored property types. North America, for example, has seen annual sponsorship growth rates of 6% in sport, 5.1% in entertainment, 4.8% in causes and 3.3% in arts (IEG, 2013).

Sponsorship marketing has created a niche position. It allows the targeting of a specific audience and delivers messages that enable brands to create a dialogue with that audience. When implemented correctly, sponsorship of a property (event) can deliver a highly credible and authentic message across all channels through which a passionate consumer engages with that property (event). Companies that succeed in delivering their message through sponsorship manage to endear themselves emotionally to their audience. The ultimate aim of sponsorship is to share in and be a part of the emotional connection that a fan has with an event. Event sponsorship differs greatly from advertising. Events are themed activities that provide an experience for the fan, the outcome and effects of which are not necessarily controllable. It is common for the relationship between the audience and the event
(whether a sporting event, concert or charity event) to be emotional in nature, thereby making the role of affect more pronounced. Today’s consumers invest time, money and emotional energy in various shared interests (Damasio, 2000), whether through sports by supporting a team or sporting event or by attending concerts or fashion events, visiting art galleries or even supporting a cause. Such interests are often an important part of people’s lives that they feel strongly and are passionate about.

The concept underpinning the use of sponsorship as a marketing mechanism is that the link formed by sponsoring an event results in the event image being transferred to the image of the sponsor or its products. Such a link is expected to evoke positive feelings in the consumer and a better attitude towards the sponsors’ products, thereby increasing product awareness and ultimately sales. Conventional image transfer models are based on this positive image association that transfers from the event to the sponsoring brand (Gwinner, 1997).

Past research on image transfer focuses on only one direction, namely, the transfer of image from the event to the sponsor’s brand. A number of researchers, however, argue that image transfer as currently treated is overly simplistic (Simonin & Ruth, 1998; Smith, 2004; Cornwell et al., 2005). A much more complex process is taking place, such as reverse image transfer, although this form of image transfer has not been empirically verified.
1.2 Background of the study

Factors such as the high cost of airtime and advertising (Meenaghan & Shipley, 1999; Jalleh et al., 2003), marked development in information technology allowing greater dispersion of messages and a highly competitive market place in mature markets (Meehaghan & Shipley, 1999; Meenaghan & O’Sullivan, 2001) have made a substantial contribution to the emergence of sponsorship as a key tool in the marketing manager’s armoury. Sponsorship, particularly sporting event sponsorship, is flourishing, with global spending accounting for nearly seventy percent of all sponsorship spending (IEG, 2013).

Despite the prolific growth in sponsorship expenditure, there is no generally accepted definition of sponsorship, partly because the literature on and notion of what sponsorship means in the current marketing environment is still evolving. In the marketing literature, an integrated communication strategy makes use of both advertising and sponsorship and considers them complimentary to each other. However, it needs to be understood that the two are fundamentally different. What differentiates them is a somewhat alien concept in the marketing literature – risk. Walliser (1997) describes risk as an intrinsic attribute of sponsorship. What makes it risky is the unpredictability of the outcome and the extent of the event’s diffusion. Contrary to sponsorship, in advertising the communication is completely controlled by the firm. Whilst some advertising-related research is applicable to sponsorship, the foregoing conceptual difference needs to be borne in mind when making inferences.
It was not long ago that sponsorship by organisations was seen as a way of achieving altruistic satisfaction. Today, however, organisations use sponsorship as part of their marketing strategy to connect with consumers and boost profitability (Porter & Kramer, 2002). Sponsorship is distinct from corporate philanthropy, which consists of making an anonymous donation or providing material support to charities (Berger, Cunningham, & Kozinets, 1999; Ulibarri, 2000) with no reciprocation expected by the firm (Gillies, 1991).

It is common for companies to appoint celebrities to endorse their products or service offerings with a view to building their brand image (Till, 2001; Till, Stanley, & Priluck, 2008). Similarly, large companies vie to associate their corporate name with events or teams that already have an established image and large group of followers, such as the FIFA World Cup, Formula 1 racing, the Olympics, Manchester United and various NBA teams. It is also not uncommon to see event managers pitching their events to gain sponsorship from large corporations, maximise funding and adding credibility to their events. Organisations sponsor events, activities or teams to establish, or sometimes enhance or change, perceptions of their product or service offerings, thereby seeking a change in their brand image. Image transfer models are based largely on this type of positive image association between or transfer from event to sponsoring brand.

Amongst the various frameworks used in the literature to explain sponsorship, the most common are congruence theory (Johar & Pham, 1999; Grohs, Wagner, & Vstecka, 2004; Rodgers, 2004; Cornwell et al., 2006), balance theory (Heider, 1958), the mere-exposure effect and the meaning transfer model (MacCracken,
Farrelly and Quester (2003) applied agency theory while Cousens, Babiak, and Bradish, (2006) tried to explain sponsorship by using network theory and other authors applied transaction cost (Sam, Batty, & Dean, 2005) approaches, but according to Walliser (2003), none received sufficient empirical support to emerge as the leading theory.

Most of the literature on the outcomes of sponsorship is built around two kinds of effects: awareness/recall and image transfer (Crowley, 1991). Sponsor awareness has been the subject of numerous empirical studies (Lardinoit & Derbaix, 2001), whilst image transfer has received less empirical research attention (Meenaghan, 2001). Ganassali and Didellon (1996) and Gwinner (1997, 1999, 2002), amongst others, have articulated the image transfer process from event image to brand image by including numerous variables that moderate such transfer. The key construct modelled as a proxy for image transfer by these scholars has not gone beyond attitude or attitude towards the brand and, more recently, attitude towards the event. However, attitude towards a product or service is very different when there is a consumption intention (MacKenzie et al., 1986; Zhang & Jung-Hwan, 2013). People evaluate products or services very differently when they are involved in a purchase decision compared to when they are just an observer, such as when watching an event on television. Attitude towards the brand or event is not an appropriate measure of image transfer, and nor is the ability to recall the name of the sponsor when an event name is mentioned. Consequently, the measurement instruments created for these research models are inclined towards measuring attitudinal change. The assumption that studies in this arena make is that the key
variable in the image of a property is the attitude towards that property. This approach is considered limited in the current research.

1.2.1 Image transfer

The focal construct in this research is image transfer, that is, the image transfer between brand image and event image. The definition of brand image has evolved over time. The definition used in research papers largely determines the research inquiry, the methodology adopted to operationalise the variables and, ultimately, the way in which findings are translated and interpreted (Reynolds & Gutman, 1984). In this research, brand image is defined as “perceptions about a brand as reflected by the brand associations held in consumer memory” (Newman, 1957; Dichter, 1985; Aaker, 1991; Engel, Blackwell, & Miniard, 1995). This definition goes beyond attitude towards the brand. The key words here are “associations”, “memory” and “perceptions”. Although conceptualising brand image as a construct of attitude allows the researcher to use a construct that is more amenable to measurement, and easier to interpret and evaluate, there is an increased risk in this definition which may lead to the conclusion that a product’s image can be estimated by the sum of its attribute values, which is clearly a narrow point of view and make “attitudinal” definitions appear inadequate. Consumers’ general attitudes are a function of their evaluative judgments of a product (Fishbein & Ajzen, 1975) and are generally explained cognitively rather than by affective means. Events too have their own branding. The decision to attend an event may be cognitive or affective but, at its heart, being part of a sporting or musical event, charity function or arts gathering is emotive, as attendees connect to the events emotionally. This research
concentrates on such mental effects as ideas, feelings, mental images and collective expectations as the key determinant of brand and event image.

Past research on image transfer focuses on only one direction, namely, the image transfer from the event image to the sponsor’s brand. Scholars such as Cornwall et al. (2005), Smith (2004) and Simonin and Ruth (2003) acknowledge that this unidirectional view of image transfer is a simplistic explanation of a complex phenomenon. However, it has garnered considerable attention because practical needs have driven the theoretical impetus. Brand managers invest millions of dollars in sponsorship deals. They seek a return on their investments and need to find means for justifying them (Carrillat et al., 2010). In doing so, they seek advice from public relations agencies, which in turn look to academics (there are numerous scholars providing advice and consultation to some of the world’s best-known companies) to provide the tools needed to capture sponsorship’s effect on their brand and brand image.

The literature conceptualises the transfer of association that occurs between a brand and sponsored property by attributing it to two consumer learning theories, namely, schema congruity and associative network theories on how memory operates. These theories provide the framework around which image transfer is conceptualised, and most research drawing upon them focus on identifying the factors that influence or moderate the image transfer process, particularly that from the event image to brand image. These factors may be broadly classified into fit or congruence between the sponsor and event, level of sponsorship, level of involvement, effect of multiple sponsorships, articulation and recall.
Associative network theories (ANT) of memory (Anderson & Bower, 1979) conceptualise memory as comprising a network of links and nodes, wherein pieces of information or nodes are linked to other nodes. At the heart of ANT lies association and the existence of cues that bring about “spread activation”. Such theories suggest that this link can be considered a meaningful association in memory. When individuals attempt to retrieve from memory, the external cue from the environment activates the source node. This then results in a spread activation from the source node to all other links connected to it until the target node is activated. The cue governs the linkage in the minds of consumers and causes a memory link that allows for retrieval to be established. The cue discussed in previous sponsorship studies is directed only from the event to the brand, with no research explicitly addressing this notable inadequacy. Because the direction of the cue governs the direction of the link in the memory (Cornwell, 2006), the image transfer mechanism and outcome may differ if consumers are guided by a reverse cue direction, which may alter the image transfer relationship between the brand and event. Such alteration depends on whether the cue is seen as representing a predictive or diagnostic outcome. The associations formed in the memory nodes may be perceived by the consumer as pointing to the event image rather than the brand image (as in conventional image transfer) as the outcome.

Events are thematic and emotive, and the role of affect is therefore expected to be pronounced. Fang, Singh, and Ahluwalia (2007) consider affect as a key process underlying the mere-exposure effect. They further state that in the resource-constrained decision-making situations that characterise many marketplace environments, dependency on affect increases. The manner of affect formation is
important and, whether formed directly or indirectly, can have consequential implications. Sweldens (2011) and Galli (2011) differentiate between affect formed by direct association and that formed by indirect association. An association created without temporal separation leads to a longer-lasting and stronger association (direct association) than that formed by an indirect association when associations are learnt and built between the memory nodes in the mind. Thus, when a brand is repeatedly paired with an affective stimuli, whether sequentially or concurrently, the result is that the affective stimuli are linked with the brand (Sweldens et al., 2010), causing a brand image to form in the minds of consumers.

In the sponsorship context, the image transfer literature considers the pairing of brand image with event image to be a sufficient condition for the association to be learnt (Gwinner, 2001; Gros & Vadher, 2004; Speed & Thompson 2002). However, this research questions the validity of this view, proposing that even when the correct cue direction is given the image transfer process will not necessarily take place because the transfer depends on whether prior affect for the brand or prior affect for the event exists. The brand-to-brand image (conjured by thinking about, observing or hearing a brand name) and event-to-event image each constitutes an association that can be formed directly or indirectly. An indirectly formed image occurs when the affective stimuli act as a mediator in the brand-to-brand image relationship (or event-to-event image relationship), whilst in the case of a directly formed association, the brand-to-brand image is directly learnt without any affective stimuli becoming attached to the brand image. It is argued here that only in the absence of a directly formed prior affect will there be grounds for image transfer to occur. Further, in the case of indirectly formed prior affect, the image
transfer will be stronger than if neutral affect existed for the brand/event. The existence of directly formed affect for the dependent variable (the brand in the case of conventional image transfer and event in the case of reverse image transfer) will block the transfer of image to it. Blocking is an empirically proven concept in the classical conditioning literature. It posits that when an additional conditioned stimulus is introduced into a relationship that has been learnt in the form of a conditioned stimulus-unconditioned stimulus, the new relationship of the additional stimulus-unconditioned stimulus is not learnt, i.e. the additional stimulus is a redundant variable and the association is blocked. This concept has far-reaching implications for the sponsorship world, as there is a very strong likelihood that billions of dollars in sponsorship spending are being wasted and not resulting in the desired effect for organisations.

Consider the Euro 2012 Football Championship (EFC) as the sponsored property (one of the teams playing in the EFC could also be taken as the sponsored property). The number of fans following the championship within Europe and beyond is very large. If England were playing on a particular evening, English pubs and restaurants were full, and the conversation before, during and after the match, even in offices, centred around the match. The 2012 edition of the EFC was sponsored by Hyundai, a Korean firm. The existence of prior affect for the EFC (a highly competitive top-quality event arousing emotions and feelings of national pride) is likely to have inhibited image transfer from Hyundai to EFC. Even if Hyundai were to experience a disaster or major scandal or, at the other extreme, become the best-selling or most popular car in the world, it is unlikely that there would be any effect on what fans thought of the Euro 2012 Championship. Similarly, consider the case of Louis
Vuitton (LV) and the America’s Cup. A consumer who has formed prior affect by
direct association with LV and considers LV to be his or her favourite brand
(because it symbolises exclusivity and prestige) is unlikely to be influenced by any
scandal surrounding or the success of the America’s Cup. In other words, the
existence of directly formed prior affect for the EFC Championship (by an ardent
fan) prevents any image transfer owing to good or bad news from Hyundai (the
sponsor) to the EFC, and, likewise, a devoted fan of LV (the sponsor) who has
directly formed prior affect for the LV brand image will not care if the America’s
Cup (the event) is caught up in a scandal or is hugely popular. An LV loyalist will
not change his or her LV brand image because of the America’s Cup. A lack of
directly formed prior affect is a necessary condition for the occurrence of any image
transfer.

Martensen and Gronholdt (2008) define an event as a live themed activity such as
a music festival or sporting event that can be considered an experience that involves
engaging consumers’ senses, feelings and emotions (see also Ørnbo et al., 2004).
The process of pairing of the event with an emotive event attribute and the resulting
outcome of the event-emotive event attribute is termed “semantic conditioning”.
The link between the two is semantically learned by consumers, whether
consciously or unconsciously (Sweldens et al., 2011). Such conditioning applies to
the event-emotive event attribute or that between the brand and its emotive attribute.
Sponsorship increases the chances of a brand being part of the stimulus-based
consideration set of spectators for persons both conscious and unconscious of the
brand-event link (Walliser et al., 2010). The processes employed within the human
brain in creating, storing and using memories are highly complex, and they have
been the topic of numerous research experiments in the field of psychology. Craik and Lockhart (1972) discuss the levels of processing and suggest that “memory traces can be seen as records carried out for the purposes of perception and comprehension and that deeper, more semantic processing results in more durable traces”. In the event-event image association or, for that matter, the brand-brand image association that is semantically learnt, affect becomes attached directly to the event/brand without establishing a memory link (unlike indirect evaluative conditioning in which a memory link is created), and is thus difficult to dislodge. This discussion brings us to the objective of this research.

1.3 Research objective

This thesis proposes a conceptual framework for the role of affect in the bi-directional image transfer process. The literature provides empirical evidence to suggest that a “semantic association that was unconsciously learnt can have significant and meaningful consequences even when it remains outside consciousness during evaluation”. The brain seemingly has the ability to make an unconscious yet meaningful application of an association that was unconsciously learnt (Galli & Gorn, 2011). That association can manifest itself in our desires, phobias or implicit knowledge or even in a situation in which we unconsciously pick fruit over chocolate when we are in a fitness regime (Murphy et al., 1995). Therefore, the brand-to-brand image association, once learnt and directly formed prior to any other sponsorship association, will not be influenced by the addition of another variable, i.e. event image, to the relationship. Any new association will be blocked, and the consumer will dismiss any negative or positive stimuli being
generated by the presence of the sponsored property in the relationship. The same is the case for an event-to-event image association.

This research proposes that the absence of directly formed prior affect is a necessary condition for image transfer to take place from an event to a brand or vice versa. It thus challenges the application of ANT in the context of image transfer due to sponsorship. These theories posit that the association itself is sufficient for image transfer to occur. Accordingly, the research objective is to provide a solution by extending ANT to include affect for a brand or event in explaining the image transfer process. Affective intensity (strongly positive or negative feelings) towards a property (object) activates or enhances consumers’ processing. The explicit role of affect in sponsorship has been largely ignored (Wakefield et al., 2010) to date, and the findings of this research will contribute to filling this gap.

1.4 Theoretical contributions

In their reviews of the sponsorship literature, Cornwell and Maignan (1998) and Madrigal (2000) argue that “research in this arena is largely descriptive in nature and has ignored the underlying theories and conceptual foundations that explain how sponsorship operates”. Meenaghan (1999) urges researchers to look beyond the study of sponsorship effects in terms of simple awareness. She wants researchers to consider the effect on consumers that the association between the sponsor and event brings about. Today’s marketers do not think of shaving cream or a razor as individual products; they think instead of “grooming in the bathroom”. The idea is to enhance the consumption experience. The advent of information technology that is moving advertising from print to sound, visuals, video and even
touch is making it easier for marketers to reach out to consumers and engage their senses. Humans are emotional beings, and in a world in which brands rule (Schmitt, 1999) products can no longer be considered as aggregation of useful features but as means to enhance consumer experiences. These experiences provide sensory, emotional, behavioural and relational values that replace functional values (Schmitt, 1999). Event sponsorship provides an opportunity for marketers to engage consumers’ senses. Any theory that does not take into account the emotional engagement that the consumer experiences falls short of providing a clear and definite explanation of why image transfer between an event and a sponsor’s brand does or does not take place.

This thesis challenges and extends associative memory theories and adaptive network models that postulate that association itself is sufficient for image transfer to occur. More specifically, this thesis posits that associative network theories need to be extended to include the presence or absence of prior affect to explain whether image transfer occurs. **I propose that in the sponsorship context, a lack of directly formed prior affect for the brand (event) in question is a necessary condition for image transfer from the event to the brand (or vice versa) to take place.**

As noted, “blocking” is a well-known concept in the classical conditioning literature. This thesis brings the concept of blocking into the sponsorship literature. It shows how the new relationships between existing image transfer variables interact and also argues for the introduction of the vital element of affect to the sponsorship and image transfer mechanisms. We know that people who follow a particular sports team will forgive and defend their team for poor performance and
that the keen supporters of a particular clothing brand will forgive the introduction of a seasonal clothing range that looks horrible. To the best of my knowledge, none of the past research on sponsorship has taken affect, let alone the manner of affect formation (direct or indirect affect), and its influence on the image transfer process into consideration. Accordingly, this research argues for its inclusion in the image transfer process.

The current image transfer literature caters to the notion than an associative network is the cause of image transfer, but remains silent on the directional dependence of the cues generated. This thesis also articulates the theoretical requirement for the researcher and practitioner to be cognisant of the cause-effect and cue-outcome relationships in the sponsorship context. Cue directionality is what determines the expected outcome, i.e. is it the change in brand image or is it the change in event image that needs to be measured? When a consumer experiences an event for which he or she has neutral prior affect, the manner in which marketing communication is structured by the event or brand influences the image transfer process. This research adds the variable of cue directionality to the image transfer literature, and provides a platform for studying reverse image transfer. It extends our understanding of the cue directionality’s role in image transfer and, from the managerial perspective, provides insight into the design of promotional sponsorship material and the implications of tying up with potential events.

The current literature on image transfer confuses brand image with attitude formation or change. Image transfer is not attitude change. Attitude is limited in its conceptualisation of brand image, failing to encompass all associations. This
research exposes this weakness in current models and provides theoretical explanations for image transfer.

This thesis fulfils the key criteria for a sound theoretical contribution elucidated by Whetten (1989), who states that

“although, in principle, it is possible to make an important theoretical contribution by simply adding and subtracting factors (what’s) from existing models, this process seldom satisfies reviews. One way to demonstrate the value of the proposed change in a list of factors is to identify how this change affects the accepted relationships between the variables (how’s)”.

It is clear that this research makes valid theoretical contributions to the literature by addressing the how, why and what of the image transfer process. Amongst other factors, it also introduces the key variables of prior affect and cue directionality, and thereby fundamentally alters our current understanding of and the currently accepted relationships between these variables.

1.5 Structure of the thesis

This chapter provides an overview of the thesis and its importance. The remainder of the thesis is structured as follows.

Chapter 2: Theoretical Background

Chapter 3: Research Question, Hypothesis Development and Conceptual Framework

Chapter 4: Methodology

Chapter 5: Analysis and Results
Chapter 6: Discussion and Theoretical Implications

Chapter 7: Conclusion
CHAPTER 2: THEORETICAL BACKGROUND

2.1 Sponsorship

Sponsorship’s position in the repertoire of a marketing communication manager’s armoury as a key strategy is indisputably more prominent than traditional advertising (Harvey, 2001). If carefully managed, sponsorship can become a source of distinctive competence that provides sustainable competitive advantage. Strategists now recognise sponsorship as conferring organisational advantage and consider it part of mainstream strategic management. Unusually, however, although sponsorship is a much-researched subject, there is no single agreed-upon definition of it. According to Meenaghan (1983), “it can be regarded as the provision of assistance (either financial or in-kind) to an activity by a commercial organisation for the purpose of achieving commercial objectives”. Gardner and Shuman (1987, 1988) describe it as “an investment in causes or events to support corporate objectives (e.g. to enhance the company’s image) or marketing objectives (e.g. to increase brand awareness), and one that is usually not made through traditional media channels”. Sandler and Shani (1989) deem sponsorship to be the “direct provision of resources (such as money, people or equipment) by an organisation to an event or activity in exchange for a direct association with that event or activity. The providing organisation can then use this direct association to achieve its corporate, marketing or media objectives”. Cornwell (1998) calls sponsorship the “orchestration and implementation of marketing activities for the purpose of building and communicating an association (link) with the sponsored”. Mullin, Hardy and Sutton (2000) describe it as “the acquisition of the right to be affiliated
or directly associated with a product or event to derive benefits from that affiliation or association”.

Amongst the various aforementioned definitions, two common themes emerge. First, sponsorship is considered to be an exchange between the sponsor and sponsored property in which both parties derive some benefit. Second, sponsorship limits itself to “the association between the sponsor and sponsored property” (Meenaghan, 2001a; Crompton, 2004; Cornwell et al., 2006). Researchers who propose that sponsorship has mere commercial value make the major assumption that the sponsorship effect is one way, i.e. the sponsor gains from the association and pays for that gain. This is an overly simplistic conceptualisation, and in fact the process by which the transfer from sponsor to sponsored takes place may be highly complex. More recently, the relationship between a sponsor and a sponsored organisation has been categorised as a business-to-business relationship (Farrelly & Quester, 2005a,b), which fundamentally alters the value proposition in the sponsor-event relationship to one of value creation for both parties, i.e. to one that goes beyond sponsorship royalties.

The previously noted definition of brand image (i.e. “perceptions about a brand as reflected by the brand associations held in consumer memory”) demonstrates the multidimensionality of the latent construct and the plurality of possible associations (Smith, 2004). For example, customers may associate Rolex with such terms as “class”, “expensive” and “finely crafted’ and Coca-Cola with “refreshing”, “thirsty” and “everywhere”. These associations are “the heart and soul of the brand” (Aaker, 1996) that give rise to the mental construct of brand image (Biel, 1992). Strong
brands and events occupy a place in consumers’ minds, and when their names are mentioned consumers develop similar mental illustrations (Davis, 2000). When an image (e.g. the brand image of a company, team or event) is linked to the image of another entity, some of that entity’s attributes and associations may be transferred to the association the consumer forms concerning the first entity. In the sponsorship context, this concept is described as the transfer of associations attributed to the sponsored activity to the sponsoring brand (Grohs, Wagner, & Vsetecka 2004).

There are a number of theoretical frameworks for explaining this transfer process in the literature. When researchers use them to define brand image transfer, they generally focus on the image transfer from event to sponsor rather than vice versa.

2.2 Image transfer

There are a number of conceptual frameworks that describe the image transfer process, but they are not without limitations. Hierarchy of effects, balance theory, meaning transfer theory, congruity theory and classical conditioning are the most relevant. The hierarchy-of-effects model proposed by Lavidge and Steiner (1961) claims that the audience for advertising and other forms of marketing communication responds to messages in a very ordered way: cognitively first (thinking), affectively second (feeling), and connotatively third (doing). Advertising is viewed as an investment in a long-term process that moves consumers through a variety of stair-step stages over time, beginning with product “unawareness” and moving ultimately to the actual purchase. The hierarchy-of-effects model is not without controversy. A number of authors have demonstrated that although advertising differs from sponsorship, both play the primary role of communicating brand attributes (Meenaghan, 1991; Witcher et al., 1991; Poon &
Prendergast, 2006). In this model, the similarity between the two is utilised to evaluate consumer attitudes towards sponsorship, thereby allowing the use of four constructs: stimuli attitude, cognition, affect and conation. Within the hierarchy-of-effects model, the full mediation effect of affect is demonstrated between cognition and conation. Poon and Prendergast (2006) deem cognition to have the least resistance, which implies that marketers can influence awareness and knowledge with little effort. They also state that cognition attitude can be easily influenced, whilst consumer affect is harder to influence. This idea is crucial to the current research, and perhaps explains why marketers today focus more on affect than attitude and look to engage consumers’ senses in the belief that effecting a change in affect will prevent their customers from being poached by other brands. However, the various proponents of hierarchy-of-effects theory argue that the act of sponsoring an event should bring about a change in the attitude of the target audience before anything else. Measurement of the change in a consumer’s attitude towards the event will reflect the change in the event image. The early acceptance of this theory in the sponsorship context shaped the way in which sponsorship research has evolved. Although the theory provides no answer to our research question, it does acknowledge that influencing consumer affect is by far the greatest challenge. One shortcoming of the theory is its assumption that attitude towards a brand is the same as brand image, which, as noted earlier, is simply not the case. Findings contrary to attitude formation being a linear hierarchical process are prevalent in the literature.

Heider’s (1958) balance theory demonstrates a view different from that of the hierarchy of effects. In the sponsorship context, this theory posits that a positive association between the consumer and a sponsored activity (event) predicts a
positive association between the consumer and the sponsor (Dean, 1999, 2002). In
the marketing literature, balance theory and meaning transfer are widely used and
accepted to explain attitudinal change. Whilst balance theory explains why an
attitudinal shift occurs, the meaning-transfer process is more concerned with the
movement of meaning than the actual mechanism of the pairing process between
the event or celebrity and the sponsor. Balance theory suggests that there exists a
trilateral relationship amongst the sponsor, the event and the consumer. It postulates
that human beings look for balance. First and foremost, they desire balance in their
attitudes, and thus they are happy to change their attitudes to achieve a state of
harmony (Dean, 1999). The implication is that people tend to like whatever is
associated with something they already like and to dislike whatever is associated
with something they already dislike (Dalakas and Levin, 2005). Otherwise, there is
no internal balance. Putting this into context of the event-sponsor relationship, if
individuals like an event or activity, that liking will transfer to the sponsor. Although
this theory is seemingly simple and easy to understand, and can be summed up in
the phrase “a friend’s friend will most likely be a friend, not an enemy”, it falls
short in explaining the mechanism underlying the image transfer. How does image
transfer occur?

Another theory that is often used and is perhaps the most prevalent in the
sponsorship context is congruence theory, which is used to describe the fit or
similarity between the event and the sponsoring brand based on consumer
perceptions. A number of researchers have examined this fit (e.g. Cornwell et al.,
2006; Grohs, Wagner, & Vstecka, 2004; Johar & Pham, 1999; Rodgers, 2004).
Gwinner (1997) demonstrated that the transfer of image from event to sponsoring
brand is more pronounced when the event and sponsor are congruent in either functionality or image. Congruity theory presumes that people strive to maintain consistency amongst their cognitions. People tend to hold identical attitudes towards issues and topic and if incongruity exists then they try to achieve equilibrium by tending to change their cognition. Congruity theory represents an improvement over balance theory as it allows not only for change in more than one attitude but also for degrees of attitudinal change. However, although the literature is replete with authors who take refuge in congruence theory (e.g. Ferrand & Pages, 1996), it falls short in addressing the critical questions of why and how image transfer occurs. The theory’s application to explaining the mechanism of image transfer is considered limited, as attitude change does not equal image change.

A different albeit related conceptual framework is classical conditioning theory, which posits that people learn relationships by using an already established relationship between a stimulus and a response to learn a new relationship with another stimulus. When an individual is exposed to two stimuli, he or she uses the relationship between them to understand the unknown stimulus (Speed & Thompson 2000). In the sponsorship context, the relationship between the event and the brand is used to catalyse the same response to the brand as that to the event. In applying the principles of classical conditioning, Speed and Thompson (2000) suggested that consumer reaction to sponsorship depends on three factors: attitude towards the event (the unconditioned stimulus), perception of congruence between sponsor and event, and previous attitude towards the sponsor (the conditioned stimulus). Although classical conditioning theory goes further than others in describing image transfer, as it acknowledges attitude to the event in addition to
attitude to the brand, as well as the congruence between the two, it fails to answer the question of why the brand image transfer occurs and what causes it to occur. Furthermore, this framework also uses attitude as a proxy for image transfer.

In Gwinner’s (1997) image transfer model, there is a lot of similarity between how events act and the role of celebrities in transferring the image (Kahle & Homer, 1985). The underlying feature of such a model is that it considers that an event image is a function of various factors, internal and external. These attributes are then transferred to the sponsoring organisation. It identifies three factors that influence consumer perceptions: event type (sport, culture, charity, etc.), event characteristics (size, venue, popularity) and individual factors. Gwinner’s model is unidirectional in nature and remains silent on the brand image’s effect on the event image (reverse image transfer).

Grohs, Wagner and Vsetecka (2004) also contribute to our understanding of brand image transfer. Their model looks at the incremental effect the event image has on the sponsor image, which is considered to be a function of three factors, namely, event image, sponsor awareness and pre-event sponsor image. The model does recognise that the pre-event sponsor image and event image have a role to play in image transfer, but it does not accommodate the reverse direction of image transfer, i.e. from sponsor to event, or explain the process.

The model proposed by Weihe, Mau and Silberer (2006) also tests only a single dimension of brand image, namely, attitude. Their model is built around three constructs of attitude: prior attitude towards the brand, attitude towards the event
and attitude towards the communication activities at the event. However, an image transfer model should be multi-dimensional in nature, and cannot be built around attitude constructs alone. Hence, this model too is deemed insufficient.

The foregoing review of existing theories and image transfer models leads to the conclusion that, despite the importance of assessing sponsorship effectiveness, there are still many unanswered questions. The current theoretical frameworks do not address the research gap identified herein.

2.3 Associative network theories and role of cue direction

To identify how brand knowledge exists in memory, many marketers take refuge in the memory models developed by psychologists (Anderson, 1983). Most brand association research is rooted in ANT, which are primarily concerned with the organisation of semantic memory. Research on ANT first emerged in cognitive psychology in the late 1960s. Cognitive psychologists generally believe that knowledge is stored in the memory and represented as associative networks (Collins & Loftus, 1975). One of the most influential ANT, which laid the foundation for the early development of memory models, is Quillian’s (1969) Teachable Language Comprehender (TLC) model. Quillian explained how associations are linked within the network and posited that they vary in terms of their hierarchical level in the network. Collins and Loftus (1975) extended the TLC model with the concept of “spreading-activation”. They illustrated how a memory search spreads upon the activation of stimuli. When a person receives a stimulus, a node corresponding to that stimulus is activated. This node soon becomes the focal node and spreads the activation to other nodes through the links between them. The
search in memory between nodes spreads out in parallel with the links from the focal node. The activated nodes then become stimulus nodes, expanding and spreading the activation. The spreading of activation constantly expands, and the degree of spread depends on the distance between the to-be-activated node and the first stimulus node. Collins and Loftus (1975) also eliminated the strict hierarchical structure in the TLC model, replacing it with the strength of associations. Gwinner (1997) made use of the theory of human associative memory (HAM) to provide the rationale for image transfer. HAM belongs to the ANT family. It is well established that associations play an important role in the mind of the consumer when he or she is evaluating a product or event. The fundamental assumption of HAM theory is that consumers use such things as brand names, product attributes and event attributes as retrieval cues for information about product performance or event aura. The implication seems to be that such cues constitute links to diagnostic information about the sponsor’s product or the event itself. According to HAM theory, knowledge can be represented as a network of concept nodes connected by links that are strengthened each time two things co-occur. An alternative school of thought is the adaptive network models (ANM) advanced by Osselaer and Janiszewski (2001). The origins of these models can be traced to the classical conditioning literature, according to which ANM strengthen associations, which are updated and evolve as cues interact or compete to predict outcomes. Thus, HAM models hold that cues are learnt independently, whilst ANM hold that the updating of associations takes place only to the extent that the learning system is not already correctly predicting outcomes (Osselaer & Janiszewski, 2001). Therefore, cues interact and compete. The strength of the association between a sponsor and an event depends on how exclusively a sponsor depicts its association with the event.
or vice versa. Cue interaction or learning is not an issue when the event and the product are perceived as an aggregate as both models make the same association. All psychological theories of causality agree that causes are conceptualised prior to their effects. For example, if a girl has blue eyes, people will infer that this is because her mother has blue eyes, not the other way around. Even when individuals are unable to observe a causal factor or perceive a temporal gap between cause and effect, they still believe that the cause precedes the effect. If we see that the road is wet, we will infer that it must have rained. It is particularly notable that the 18th century philosopher David Hume (the forefather of modern associationism) explicitly included the temporal precedence of causes to their effects as part of his definition of causality (Hume, 2003). It is the temporal separation that allows determination of the direction of causality, i.e. from cause to effect. Hume recognised a strong conceptual distinction, based in part on temporal asymmetry, between events that are causes and events that are effects (Pearl, 1988; Reichenbach, 1956). It is directional causality that gives rise in the mind of the consumer to notions of which factor is the cue and which is the outcome (brand/event). As an example, consider the two following two statements.

1) Sony, a global entertainment company, yesterday announced the beginning of a two-year sponsorship deal with the V-Festival, which runs each year in August and features a variety of rock bands playing all round the clock. Sony explained that sponsorship of the V-Festival was ideal, as it would further the company’s image of delivering quality entertainment. The company is excited about this move towards targeting young adults and views the V-Festival sponsorship deal as the perfect starting point.
2) The V-festival in the UK town of Chelmsford has signed a three-year sponsorship deal with Sony Entertainment, which will bring a wide range of artists under the Sony banner to the festival. The V-Festival runs from dusk to dawn. The Sony deal will strengthen the event’s positioning as a popular choice for music lovers and place it firmly on the touring calendar.

It is evident that the directional cue in the first statement is towards Sony, whereas that in the second is towards the V-Festival. An individual’s mental response will be vastly different if he or she reads the first rather than the second statement. The primary nodes that are activated in the memory differ between the two statements. It can be inferred that the causal directionality afforded by the direction of the cue has a major influence on the mental construct of the brand or event conjured in the consumer’s mind, and thus it may also influence the image transfer. In this example, the V-Festival is a themed activity, a non-stop music festival that generates considerable emotion in those who attend it. People travel from across Europe to camp in Hylands Park in Chelmsford for the festival weekend.

In the marketing literature, even Keller’s (1993) conceptualisation of brand equity is based on ANT. His discussion of brand associations reflects the theoretical underpinnings of ANT. Much of the brand association research applying ANT to sponsorship has remained at the level of descriptive analysis, such as brand concept mapping and identifying primary and secondary associations (Henderson et al., 1998), instead of elucidating the manner in which the associations were built in the first place. The current research addresses this gap in the sponsorship literature and brings to the fore the cue directionality at work in image transfer.
2.4 Role of affect

Consumer behaviour research emphasises the importance of emotions in consumers’ choices (Hansen, 2005). Research in other behavioural fields of neurological and neuropsychological research also emphasise how emotional processes influence our behaviour (Damasio, 1994, 2003; Le Doux, 1998, 2002). It is slowly being recognised that feelings and emotions are an important aspect of most decisions that consumers make, which has led to increased research interest in documenting that importance in the marketing context (Hansen, 2005; Hansen & Christensen, 2007). The growth of creative and emotional media has exploded due to the focus on seeing the consumer as an emotional actor. The advent of the internet, the affordable dissemination of visual and audio materials, predictive software and search engines is allowing marketers to engage with their target markets in a much more personal manner. They are now able to tailor the experience and emotionally engage with consumers in their desire to create competitive advantage. Desmet (2005) examines emotions from the product design perspective, stating: “Creating differential advantage through emotional benefits is one of the keys to market success.” Organisations thus attempt to create the right mental image for their product/service.

Aaker (1998) provides a framework that describes this mental image in the consumer’s mind. She puts forward an easy-to-understand model that describes the profile of a brand using human beings as an analogue. Her model measures the personality of a brand in five core dimensions, with each dimension divided into a set of facets. Each facet is in turn measured by a set of traits. The individual traits create the human being-like effects of a brand’s personality. Aaker’s (1998)
framework brings brand image alive and demonstrates why the affiliations between consumers and brands have depth and feelings and can be likened to an affective relationship. Events are not simply products, but have their own images. Some events are fun, some are sporty, some are elitist and some are diverse in nature. We know that attending an event generates emotions in the audience, and thus are essentially emotional in nature (Du Plessis, 2005). An event-event or brand-brand image relationship is created in the minds of the consumer. This is the basic tenant of image creation.

In the marketing literature, affect and emotion are often used interchangeably. Both have their roots in psychology. Whilst the confusion between the two, and resulting erroneous use of one or the other, is relatively easy to understand in marketing research, Batson, Shaw, and Oleson (1992) note that even in general psychology research, “most often, the terms affect, mood, and emotion are used interchangeably, without any attempt at conceptual differentiation” (p. 295). Young (1961) describes a variety of affective processes, of which emotion is one. The criteria he uses for distinguishing amongst the affective processes of feelings, affect and emotions include the source of stimulation, intensity, duration, disruptiveness, cognitive involvement and the presence of pathology, although he recognised that there is some degree of overlap amongst the affective categories. The classic theories in the marketing literature depict attitude as being formed from cognitive, affective and conative processes, and their failure to differentiate evaluative measures and processes that are antecedent to attitude formation from those that precede it thus causes many researchers to see “affect” as an evaluative aspect of attitude. However, researchers have begun to make considerable strides in
establishing the lines of demarcation (Alpert & Rosen, 1990; Batson et al., 1992; Beedie, Terry, & Lane, 2005; Russell, 2003; Russell & Feldman Barrett, 1999). Russell and Feldman Barrett (2009), for example, define affect as a “neurophysiological state consciously accessible as a simple primitive non-reflective feeling most evident in mood and emotion but always available to consciousness”. Bagozzi et al. (1999) also clearly distinguish between affect and emotion. They view emotion as a state of readiness that is intense in the sense of felt subjective experience and consider the magnitude of the physiological response and extent of bodily expression. The critical element is the way that emotions arise, i.e. they arise in response to the appraisal one makes of something of relevance to his or her well-being. Appraisal is an evaluative judgment. Therefore, emotions differ from affect, which is not necessarily cognitive in origin and does not require appraisal (Bagozzi et al., 1999). The central role of appraisal in the formation of emotions has come to define what are aptly called appraisal theories in psychology. Although, as noted, affect and emotion are often used interchangeably in the marketing arena, in this thesis, the term “affect” refers to something that does not require appraisal and is used to describe an internal feeling state. An individual’s explicit or implicit “liking” for some object, person or position is viewed as an evaluative judgment rather than an internal feeling state. As Russell and Carroll (1999a) put it: “By affect, we have in mind genuine subjective feelings and moods (as when someone says, ‘I’m feeling sad’), rather than thoughts about specific objects or events (as when someone calmly says, ‘The crusades were a sad chapter in human history’)” (pp. 3-4). The phrase “feeling state” is used to refer to an affective state that is general and pervasive. Such a state “suffuse[s] all one’s experiences, even though directed at none in particular” (Fiske, 1981, p. 231).
According to Cohen et al. (2006), consumer research has matured greatly in its understanding of the important role of affect in consumer behaviour, and now generally recognises its centrality. Whilst affect was previously treated as just one other explanation for why consumers behave in a particular way and respond to ad-induced feelings, today the focus has shifted to how affect in its different forms – integral, incidental and task-related – plays a vital role in how consumers perceive and in their motives, decisions and actions. Researchers are also increasingly cognisant of feelings being interpreted differently depending on the questions individuals pose internally when inspecting their feelings (Pham, 2004). These questions appear as if they impact on how people seem to interpret their feelings.

According to Hansen (2005), most consumer choices are characterised by limited cognition, but are controlled by emotional responses to a high degree. This is even more the case under the resource- and time-constrained conditions in which we find ourselves. Hansen’s view is also supported by Heath (2001). The basic fabric of how we look at and perceive the world around us is internal rather than external. It is inside our minds. Our affective stimuli determines how we associate the things around us. Walking into a restaurant will constitute a completely different experience if you are about to sit down with close friends to enjoy a gourmet meal rather than end a religious fast or if you have a ring in your pocket and are planning to propose marriage. Our response to the world around us and our everyday behaviour is to a great extent influenced by the affective stimuli attached to the activity. The same activity, be it shopping, talking the dog for a walk, listening to music or writing and email, may serve different goals on different occasions, and hence is experienced rather differently given the circumstances. Therefore, the
critical component of consumer learning is affective stimuli, and this component lies at the heart of this research. The manner in which these stimuli are attached to a property is of great importance, particularly in the case of things we consider emotive such as the bond we share with a brand or the excitement we feel when we are part of an event. Unfortunately, the extant literature on sponsorship is silent in this regard.

A recent paper by Galli and Gorn (2011) provides empirical evidence showing that the pairing of an event to an emotive event attribute is semantically learnt by the brain, whether consciously or unconsciously. The pairing of a brand or event (conditioned stimuli) with its affective stimuli results in the creation of a brand image or event image (unconditioned stimuli). Gwinner and other proponents of image transfer do not account for the existence of affect in their models to explain why image transfer takes place in some consumers and not in others and why is it stronger for some than others. The existence of an image in the consumer’s mind, whether it is the image of a brand or an event, is based on the mental construct of affective stimuli. It is thus a considerable oversight for any image transfer model to ignore the way in which this mental construct is formed. Researchers have considered various moderators that influence image transfer, such as attitude towards the brand, attitude towards the event, congruence, fit, multiple sponsorship, co-sponsorship, the level of involvement and articulation, amongst others, but have neglected the role of affect, which lies at the very heart of such transfer. Affect generation and the type of affect generated are very much ignored in existing models. Ingrained in ANT is the concept of activation of the cue, peripheral or otherwise, which allows our memory structures to be activated to reach their target
node. It seems that current models somehow neglect Hume’s (2003) insight into causal directionality when translating causes and effects into the language of stimuli and responses or cues and outcomes. Causal-model theory postulates that individuals are less likely to attribute causality to variables that are redundantly paired (when a new variable is introduced to the relationship) with existing stimuli, i.e. affective stimuli. This process is often termed “blocking” (from the literature on classical conditioning) or “discounting” (from the literature on social attribution) (Tversky & Kahneman, 1980), and can be derived from both contingency-based models (Cheng & Novick, 1992; Waldmann & Holyoak, 1992) and the Rescorla-Wagner (1972) model of associative learning. In traditional blocking experiments, there are typically two acquisition phases. In the experimental group, the first phase is exposure to a conditioned stimulus A (CS(A)) paired with an unconditioned stimulus (US), whereas the control group is exposed to no conditioning. The second phase is the exposure of CS(A) and another conditioned stimulus X (CS(X)), paired with the US, to both the experimental and control groups. Finally, the participants are tested for CS(X). Blocking is reflected by the difference in scores between the experimental and control groups, which evidences the blocking of CS(X) in the experimental group (Arcediano, Matute, & Miller, 1997).

Therefore, the central argument is that, for any image transfer to take place, the prior affect between the brand and brand image needs to be associated with the event image in the minds of consumers. The success of creating this association depends on whether the prior affect was formed directly or indirectly. Directly formed prior affect between the brand and brand image will block any other variable (event image) from influencing the relationship, whereas a lack of prior affect will
allow the image transfer to take place. In the case of reverse image transfer, the same applies to the event-event image. The brand image cue in the event-event image relationship competes and interacts with prior affect for the event.

In distinguishing between directly and indirectly formed prior affect, the literature shows that directly formed prior affect is resilient, whereas indirectly formed prior affect is open to influence (Sweldens, 2011). The influence of the initial instinctive emotional stimuli that gave rise to the relationship between the brand (event) and the brand (event) image is critical in the formation of directly/indirectly formed prior affect.

This chapter can be summarised as follows.

1. The bulk of the extant research literature is based on a unidirectional image transfer process, namely, that from the event to the brand. There is no research on the reverse process, although several authors have recently acknowledged that such a process may also occur.

2. In the current literature, the underlying mechanism of image transfer is attributed primarily to ANT, although these theories are unable to shed light on the why and how of the image transfer process.

3. Most research proxies’ image transfer by a change in attitude or the ability to recall the name of an event. This is not considered a valid measure of image transfer.

4. Associative theories concern cues that activate memory nodes and the direction in which they do so, although these cues have not been sufficiently investigated in the sponsorship literature.
5. We know that events are considered to be thematic, and therefore produce emotional stimuli. The existence of affect, a crucial response at the primate, instinctual and intuitive levels of human psychology, has been ignored in the image transfer process.

In sum, the existing sponsorship literature is limited by its failure to address these crucial issues. The role of affect should lie at the heart of any sponsorship agenda, and this worrying knowledge gap thus needs to be filled by examining and defining the influence of affect in the image transfer process. As previously noted, annual sponsorship spending is already in excess of USD50 billion, and this enormous expenditure is taking place without a full understanding of the image transfer process. This thesis provides evidence to show that event managers need to be cognisant of who they invite for sponsorship. Sponsors engaging in an event sponsorship arrangement hope that image transfer will take place from the event to the brand. The findings of this research suggest, however, that the effect that sponsors are hoping for may not be occurring at an emotive level for ardent fans of the event despite the large amount of sponsorship spending. Accordingly, their efforts may be misdirected, and they could be better off by targeting new consumers with neutral prior affect for the brand or event.

In the current sponsorship literature, affect does not play a central role in the image transfer process, although authors such as Becker-Olsen and Hill (2006) do refer to it. The marketing literature is increasingly acknowledging that consumers are emotional beings and that organisations should recognise this fact in their marketing
strategies and use emotional triggers to attract and retain consumers. However, as noted, affect is also ignored in marketing discussions.
3.1 Research question formulation

People are not necessarily aware of what is causing them to feel the way they feel at every given moment. They commonly make mistaken attributions about their psychological experiences, and this seems particularly true for affective or evaluative experiences (Jones, Fazio, & Olson, 2009). Russell (2003) theorises that an emotional experience is initiated by activation of the underlying affective dimensions of valence and arousal, thus forming affect. Therefore, an affective stimulus is the emotional valence (positive or negative) that causes a consumer to form the first mental representation of a given object. In the case of a brand, in the absence of an affective stimulus, there will be no formation of a brand image, although some may argue that the brand image can still be formed by cognition, i.e. knowledge of the brand. However, the theory of emotion (from psychology) proposes that affect leads to cognition (James Lange, as quoted by Ellsworth (1994), Forgas (1995) and Schachter-Singer (1962)). Accordingly, affect influences and precedes cognition. Brand images are individual consumers’ perceptions and associations that reside in the memory. The interaction of the consumer and brand originates in affective stimuli, which are antecedents of the brand image. Indirect affect can thus be simply explained as the brand creating an unconditioned affective response in the form of brand image when subjected to affective stimuli. The process can be better illustrated with an example. Let us say that Jennifer Lopez is the celebrity associated with the clothing retailer Bebe, which runs an advertising
campaign featuring the famous and glamorous singer and actress (affective stimulus). This campaign may result in a new association between Bebe and Jennifer Lopez in the minds of consumers. When they subsequently encounter the Bebe logo, the encounter is likely to increase the activation level of Jennifer Lopez in their memory. If the thought of Jennifer Lopez generates positive feelings in the consumer, he or she also experiences greater liking of Bebe. The three interplaying constructs here are brand, brand image and affective stimulus. To clarify these constructs and eliminate the possibility of multicollinearity, their definitions are repeated here, as it is essential to distinguish amongst brand, brand image and affective stimulus to ensure discriminant validity. Brand can be described as a concept that separates a company, or its products or services, from its competitors. According to the American Marketing Association, a brand can be a logo, slogan, text or design that has the power to attract customers and retain existing customers. This definition of brand is also supported by Aaker (1991) and Olsen and Hill (2006). A brand may also be represented as a trademark that is associated with a company or product. The psychological aspects of a brand (in the memory) constitute the brand image. Levy (1978) defines these psychological aspects as a constellation of pictures and ideas in people’s minds that sum up their knowledge of the brand. Durgee and Stuart (1987) describe brand image as what the brand connotes or means symbolically in the eyes of the consumer. The brand manifests itself in the consumer mind as brand image. However, it must be understood that brand image, whether positive or negative, is distinct from the brand itself. A brand is always exclusive, whilst its image can be shared with other brands. Both Coca-Cola and Pepsi are brands. Although mutually exclusive, they share many qualities or images. To build brand image, organisations use advertising, event sponsorship,
product placement and other forms of promotion to pair their brand with positive affective stimuli (Gibson, 2008; Gorn, 1982; Kim, Allen, & Kardes, 1996; Stuart, Shimp, & Engle, 1987). These pairings can be performed in several different ways that are collectively known as evaluative conditioning procedures (De Houwer, 2008; De Houwer, Baeyens, & Field, 2005; De Houwer, Thomas, & Baeyens, 2001; Walther, Nagengast, & Trasselli, 2005).

The central argument of this thesis is that ANT alone are insufficient to explain the image transfer process. The existence of prior affect blocks (in the case of directly formed prior affect for the brand/event) or moderates (in the case of indirectly formed affect) the image transfer. Further, image transfer is a bi-directional process, i.e. it takes place both from event image to brand image and in the reverse direction from brand image to event image. The strength of this bi-directional image transfer is asymmetrical.

3.2 Research questions

There are several crucial questions this research answers that have not been addressed in the sponsorship literature:

- Why and how does image transfer take place?
- Is image transfer a bi-directional process?
- What role does affect play in explaining the image transfer process?
- Do direct and indirectly formed affect have the same influence on the image transfer process?
- How does blocking influence image transfer?
- What role does cue direction play in explaining the image transfer process?
3.3 Image transfer is bi-directional

Modern psychological theories of associative learning describe learning as the acquisition of associative links between cues and outcomes (Rescorla & Wagner, 1976). Organisms are perceived as responding to cues irrespective of the type of events actually occurring around them. Shanks and Lopez (1996) claim that people do not differentiate between predictive and diagnostic inferences. Instead, they simply learn to associate cues with responses, without any sensitivity to whether the cues are understood as causes, effects or arbitrary signals devoid of any causal interpretation.

However, failure to distinguish between forms of causality may lead to poor judgment. Any theory that posits insensitivity to causal directionality would mean that people do not understand the physical world they live in. At the very least even babies are able to interpret causal directionality. Make a sound, and the baby knows which side to turn its head. Whether the ability to distinguish cause from effect is learnt or attributed to evolution is not a subject for discussion for this thesis. In the context of our everyday lives, when we see wet roads we immediately conclude that it must have rained rather than concluding that it is going to rain because the roads are wet. Let us take another example. Arsenal Football Club is sponsored by Emirates Airlines. An advertisement could either depict a strong and vibrant club in the English Premier League and then show that the club’s sponsor is Emirates Airlines (cue directionality from Arsenal to Emirates) or Emirates Airlines, a five-star airline that takes pride in its service, luxury and multicultural reach and then show that it is the sponsor of Arsenal Football Club (cue directionality from
Emirates to Arsenal). Similarly, Arsenal could hand out free or discounted airline tickets to selected club members annually or Emirates Airlines could send exclusive invitations to championship matches to its platinum-tier frequent flyers. The manner in which the brand-event relationship is depicted provides either direct or peripheral cues to the consumer. People place more weight on cues that are easier to access (Shah & Oppenheimer, 2007). Most of the cue/outcome relationships in people’s minds occur without their awareness in an internal guidance system. For instance, audience responsiveness may be taken as a cue for speaker/message persuasiveness (Axsom, Yates, & Chaiken, 1987), feelings of outrage as a cue for the need for punishment (Kahneman & Frederick, 2002) and brand name as a cue for product quality (Maheswaran, Mackie, & Chaiken, 1992). Shah and Oppenheimer (2006) show that “heuristics such as these converge on an underlying domain-general mechanism in which cues that are easy to process or retrieve are weighted more heavily than others”. People prefer a lighter cognitive load when making associations about the relationships around them.

The current literature focuses only on event image transfer to brand image, remaining silent on the reverse transfer. Because associations are formed in the memory nodes of the brain (Sweldens, 2011) and subsequent associations are dependent upon how the original associations were conceived, whether in the event or brand context, the direction of association formation determines the way in which the event-brand relationship is perceived. The following hypotheses are thus proposed.

H1A: The pairing of a brand image with an event image in the sponsorship context transfers the image from the event to the brand (conventional image transfer).
H1B: The pairing of an event image with a brand image in the sponsorship context transfers the image from the brand to the event (reverse image transfer).

H2A: The image transfer to the brand is greater when the cue is directed towards the brand than when there is no cue.

H2B: The image transfer to the event is greater when the cue is directed towards the event than when there is no cue.

3.4 Directly formed prior affect

Martensen and Hansen (2004) question whether sponsorship follows traditional cognitive information processing which occurs when consumers view advertisements. There they evaluate the product related arguments presented to them. They also argue that information processing requires a certain amount of mental energy to be generated and, in the case of sponsorship, such energy is rarely present. It could therefore be interpreted that the consumer is indifferent to the medium by which the relationship between the event and brand in the form of sponsorship is conveyed (e.g. stadium banners, equipment or clothing) as their primary concern; rather, their concern is with the event with which the sponsorship is linked, be it a football or tennis match, car race or concert. Accordingly, one would expect the information processing of sponsor messages to be relatively subtle and to take place at the emotional rather than cognitive level.

Event-brand image transfer is therefore hypothesised to initially exist at the emotive level. We know that affect is faster than cognition (Ferguson, 2007). Hansen (2005) also looks at emotions as highly primitive, extremely fast and yet unconscious mechanisms that control the individual responses to a variety of situations. These
may range from serious threats (e.g., crossing a road and a fast moving car approaching) to trivial decision-making tasks (choosing amongst coffee brands at the supermarket). When people attend an event or come across a brand name, affect for that event or brand is formed (consciously or unconsciously) before any cognitive processing occurs. The simultaneous presentation of the brand (event) and affective stimulus allows the affective response generated by the affective stimulus to become attached to the brand (event). This connection between the brand and brand image or event and event image owing to affective stimuli may be directly or indirectly formed. It is hypothesised to be a form of referential learning (Baeyens, 1992) wherein the stimulus simply activates a mental representation of the outcome even though the outcome may be a statistically contingent occurrence or there is no expectancy that it will necessarily occur. For example, mentioning the name of one’s beloved may cause one to think of a kiss without necessarily expecting one to occur. This form of evaluative conditioning is posited by theory to be highly resistant to extinction because referential learning is assumed to be part of a primitive automatic association formation mechanism (Hofmann et al., 2010). The same applies between a brand and brand image, and this affective relationship is resistant to the presence of other alternate variables. If other variables are introduced into the relationship, it forms the classic case of cue-outcome competition, which brings us to blocking. This phenomenon was first observed by Kamin (1969) in experiments on aversive conditioning in rats. Blocking is thus viewed as the result of a second redundant cue’s failure to acquire associative strength. It can occur regardless of whether the redundant cues are interpreted as causes or effects. As noted, directly formed prior affect is resilient, whilst its indirectly formed counterpart is open to influence. The effect of the initial
instinctive emotional stimuli that gave rise to the relationship between brand (event) and brand (event) image is critical in the formation of directly/indirectly formed prior affect. Therefore, when prior affect is directly formed, the image transfer is blocked despite the introduction of additional stimuli to the brand (event) image, as the new association will not be learnt and is a redundant cue. The following is therefore hypothesised.

H3A: Directly formed prior affect for a brand prevents image transfer from the event to the brand.

H3B: Directly formed prior affect for an event prevents image transfer from the brand to the event.

3.5 Indirectly formed prior affect

When brand (event) affect formation is indirect, it is crucially dependent on the successful consolidation (and later retrieval) of the brand (event)-affective stimulus associations in the memory. It is common place for brands to use celebrities for endorsement and in many instances a single celebrity. Advertisers hope that the favourable feelings generated by the positive stimuli will attach to the brand. When the affect is formed indirectly, for example between Tiger Woods and many of the brands he endorsed, his indiscretions were particularly damaging to those brands. On the other hand Nike, who use over 50 likable sports athletes to endorse their product, for a fan, Nike brand becomes more liked as a consequence of the sponsorship of many athletes, not because of the sponsorship of any one athlete. Therefore, indirect affect formation implies by definition that the affective response to the brand/event is mediated by the activation of the affective stimulus in the memory (Sweldens et al., 2011). Accordingly, manipulations that hinder the
successful establishment or retrieval of brand-affective stimulus associations in the memory, such as retroactive interference by new learning, have a disruptive effect on conditioned attitudes when affect formation is indirect. Sweldens et al. (2011) describes the indirect affect transfer process as a consequence of the formation of a link in the memory between the brand and affective stimulus when the repeated pairing of a brand with an affective stimulus gradually strengthens the association between the two in the memory. Thereafter, when the brand is encountered on its own, it activates the representation of the affective stimulus in the memory, which in turn automatically arouses the positive feelings inherent in that stimulus. Affect transfer is indirect because the positive feelings experienced in the brand’s presence are mediated by increased activation in the memory of the affective stimuli that were previously paired with that brand. The evaluative conditioning literature describes this process as stimulus-stimulus (S-S) learning. If a change in feelings towards a brand/event occurs through the indirect route (i.e. by means of brand-affective stimulus associations), then any change in affect towards the affective stimuli will yield corresponding changes in affect towards the brand. Indirect affect is thus easier to overcome. Pham (1992) shows that greater emotional or cognitive involvement with a sponsored organisation prompts consumers to devote more resources to processing sponsorship information in general. The implication is that if a consumer is involved with a brand/event and affect is indirectly formed, he or she will be more conducive to image transfer. This discussion leads to the following hypotheses.

\[H4A: \text{Image transfer to the brand is more pronounced when there is indirectly formed prior affect for the brand than when there is neutral prior affect.} \]
H4B: Image transfer to the event is more pronounced when there is indirectly formed prior affect for the event than when there is neutral prior affect.

3.6 Asymmetrical image transfer

In the human memory literature, the independent association hypothesis (IAH) describes the relationship between two symbols, A and B, if encoded successfully, would demonstrate that the forward association between A and B tends to be stronger than the backward association between B and A. It also theorises that the strength of the two associations (forward and backward) are distinct and independent. IAH proposes that associations are unidirectional pointers connecting different mental representations (Wolford, 1971; Wollen, Allison, & Lowry, 1969).

Consider, for example, the presence of a man sitting on a chair. IAH theorises that the mental representations of a man and the chair are connected by two distinct unidirectional associations, one pointer from man to chair and another from chair to man. These forward and backward associations are individually modifiable and statistically independent (Wolford, 1971). However, Gestalt psychologists have raised an opposing view, which states that associations between distinct items are established simultaneously and with equal strength. This is the associative symmetry hypothesis (ASH) (Asch & Ebenholtz, 1962; Sommer et al., 2008). In its strongest formulation, ASH claims that paired-associates can be encoded as composite units resulting in holistic representations of the association in memory (Mandler, Rabinowitz, & Simon, 1981; Mandler, 1982).

Researchers have reported findings that support both hypotheses. These apparently contradictory findings supporting two opposing theories are ascribed in part to
major differences in experimental procedures and stimulus material (Kahana, 2002). His finding that forward-recall and backward-recall probabilities are equal, on average, is fully consistent with both ASH and the IAH. Violations of symmetry, in contrast, have been used to argue against ASH (Pike, 1984). However, neither hypothesis offers a principled explanation for the appearance of asymmetric retrieval under certain conditions (Kahana, 2002; Kahana & Caplan, 2002). Asymmetries in retrieval are usually produced when the constituent elements of paired associates are drawn from different stimulus classes. Such asymmetries have been shown for adjective-noun and concrete-noun-abstract-noun pairs (Lockhart, 1969) and digit-letter pairs (Bartling & Thompson, 1977; Levy & Nevill, 1974) and in research in which item availability was experimentally altered (Asch & Ebenholtz, 1962; Horwitz, Norman, & Day, 1966). These studies posit asymmetry not as a function of the encoding direction, but rather of the stimulus material employed, which differs with respect to the number of its pre-experimental associates (Kahana, 2002). Hence, asymmetry can exist when there is a difference in the stimulus for two items. In the case of image transfer, the occurrence of an association between a brand and an event in the form of sponsorship gives rise to the existence of pre-experimental associates. When participants walk into a controlled environment such as that in an experimental setting, they do not leave behind their mental make-up or leave their education outside the door. In a sponsorship setting, they are aware that the sponsor is seeking something from the sponsored organisation and is paying for it. The stimulus that a consumer has for a brand and a fan has for an event differ. Asymmetrical image transfer between the brand and event, and vice versa, is therefore to be expected.
The need to make intuitive judgments can be found in all societies. If we had to rely only on statistical information, we would be in dire straits. “Our physical, biological and social environments are causally structured, and our intuitive theories of the world are often – but not always – sufficient to capture the most relevant structures for enabling appropriate causal inferences” (Krynski & Tenenbaum, 2007). In the context of sponsorship, the pre-experimental associate is the presence of an existing sponsorship arrangement in which the sponsor pays to be associated with an event and expects something in return. The cause and effect relationship is evident. The brand desires the association with the event, and hence the brand pays, which implies that a stronger image transfer takes place in the direction of the brand than in the direction of the event. As Kahana (2002) demonstrates, such pre-existing associates necessarily produce more interference during cued recall, thereby decreasing the chances of successfully retrieving the lesser associated name within the brand-event pair. This discussion brings us to our final hypothesis.

H5: The image transfer from event to brand and brand to event is asymmetrical, and more pronounced towards the brand than to the event.

3.7 Research model

The conceptual model for the research presented in this thesis is depicted in Figure 1.
Summarising the discussion thus far, the most important concepts in the sponsorship literature are the following:

- Building awareness to promote recall (Crowley, 1991; Lardinoit & Derbaix, 2001)
- Image transfer (Meenaghan, 2001; Ganassali & Didellon, 1996; Gwinner, 1997, 2001)

Image transfer models have been proposed by the following scholars.

5. Lardinoit and Derbaix (2001)

These models do not focus on the how and why of image transfer. Although they use ANT to explain such transfer, they limit their conceptualisation to a change in attitude towards the brand. Further, although various moderators are added to the models, none delves into how image transfer actually takes place. Those proposing the models do not consider that reverse image transfer from brand to event image could be occurring, and, more crucially, they fail to address the role of affect in image transfer even though we know that events are emotive and thematic.
Hart (1998, p. 28) defines methodology as a “system of method and rules to facilitate the collection and analysis of data that provides the starting point for choosing an approach made up of theories, ideas, concepts and definitions of the topic”. This chapter examines in detail the methodological procedures adopted for this research.

4.1 Research design

The research was designed to provide insights into the issues identified in the previous chapters and repeated here in objective form:

1. To examine whether empirical evidence exists for reverse image transfer (the transfer of image from brand to event).
2. To examine the role of directly and indirectly formed prior affect in image transfer in the sponsorship context.
3. To examine whether cue directionality effects image transfer in either direction.
4. To determine whether image transfer is asymmetrical if reverse image transfer is observable under the controlled experimental conditions, as hypothesised.

An experimental design was adopted to test the research hypotheses. Three experiments were carried out to fulfil the aforementioned objectives, and the hypotheses were tested using a full factorial design. Scenarios were created to test
each of the experimental conditions. Scenario experiments are widely accepted in
the research community to test theories in the marketing realm. Bateson and Hui
(1992) give a detailed discussion of the benefits of scenario experiments, and also
provide evidence of their ecological validity.

1. Two pretests and three experiments were conducted in English language for
this research. The two pretests were carried out to identify the variables to
be used in the main experiments.

2. Experiment-1 was designed to ascertain whether reverse image transfer is a
real phenomenon (H1A, H1B), to determine the role played by and
influence of prior affect for a brand or event on image transfer (H3A, H3B,
H4A, H4B) and, finally, to ascertain whether cue presence or direction has
any effect on image transfer (H2A, H2B).

3. Experiment-2 investigated whether image transfer is stronger in one
direction than the other direction, i.e. its objective was to provide empirical
evidence of the asymmetrical nature of image transfer (H5).

4. Experiment-3 was designed to test whether image transfer is blocked by the
presence of prior affect formed directly for the dependent variable (H3A,
H3B).

In each experiment, information for manipulation and a manipulation check was
embedded in the scenarios.

4.2 Research approach

4.2.1 Quantitative versus qualitative research

The two main research approaches are qualitative and quantitative research. The
quantitative approach is suitable for statistical analysis, hypothesis testing and the systematic analysis of created measures, whereas the qualitative approach is suitable for analysis of non-numeric data, including text and pictures (Neuman & Kreuger, 2002; Denzin & Lincoln, 2005). This research is grounded in quantitative analysis, and quantitative data were collected to test the proposed model.

4.2.2 Primary versus secondary research

Finn et al. (2000, p. 40) define primary research as “the original data generated by new research”. Malhotra and Birks (2000) state that primary data should be specific to the objective, and Clark et al. (2001) aver that the validity of any research is only as good as the data gathering methodology used. It is thus important to adopt a rigorous and accepted research methodology for primary research.

Secondary research, as defined by Finn et al. (2000, p. 40), constitutes “the information collected for a purpose other than that of the researcher”. Its main benefits are greater reliability, validity, and cost-effectiveness and more up-to-date information. Bruce (2009) notes two main disadvantages of secondary research:

a. Lack of a consistent, stable perspective. As the literature features different sources and authors, varying perspectives and objectives are displayed in terms of data usage.

b. Secondary research tends to raise questions rather than address specific objectives.

Other researchers have investigated image transfer, too, but with different goals and objectives, and their circumstances and context have been entirely different from
those of this researcher. Hence, is it vital that any issues and corresponding problems are dealt with by collecting, selecting and organising data that can be aligned with the aims and objectives of the current research, as well as with any issues identified during a review of the literature (Hussey & Hussey, 1997). Hart (2000) suggests that researchers should differentiate between fact and opinion in the literature, and also determine whether the authors’ perspectives therein are objective and unbiased. The secondary research, data and findings used in this research were collected from journal articles, e-journals and internet databases.

4.2.3 Inductive versus deductive research

Any research can be approached in either a deductive or inductive manner. Saunders et al. (2007) define deductive research as “research in which a conceptual and theoretical structure is developed which is then tested by empirical observation; thus particular instances are deducted from general inferences”. The inductive research on the other hand relates to the absence of hypotheses and theories at the start of the research and inferences are made after the analysis of the data and findings. This research adopted the deductive approach.

4.3 Data Collection

The research data were collected by means of experiments conducted online but in a laboratory setting. Participants in groups of 30-35 took part in the experiments in their own time. They completed a questionnaire, watched presentations and responded to online questions in a controlled environment within the on-campus computer room at the researcher’s university (Hong Kong Baptist University
Eighteen scenarios were created for Experiment-1 (see Appendix 1), six for Experiment-2 (Appendix 3) and sixteen for Experiment-3 (Appendix 5). The main experiments thus comprised 40 scenarios involving 1305 participants. An additional 161 participants took part in the pretests. The scenarios included videos, pictures, presentations, filler activities and test questionnaires. For ease of administration, a webpage was created with numbered links to the scenario combinations. Participants in groups of 30-35 were randomly assigned links on the webpage that took them to their designated experimental scenario. The participants were allowed 30 minutes to complete the experiments.

4.4 Quality criteria

4.4.1 Reliability and generalisability

Hussey and Hussey (1997, p. 57) define reliability as “one aspect of credibility in a research study and finding”. Reliability is proved if researchers are able to obtain consistent results with repeated procedures. Thus, the decisive factor in reliability is the “consistency of the results” (Veal, 2006, p. 41). Malhotra and Birks (2000) point out that internal consistency reliability is also important. For this thesis, the data were gathered automatically using Qualtrics software and then exported to SPSS, lending the research internal consistency reliability. The scales were adapted from published reputable journal articles, and are considered reliable because the creditability of the data sources is guaranteed by third parties. However, to eliminate any inconsistencies, the scales were re-evaluated for reliability and
unidimensionality in the context of a predominately Chinese participant group. The experimental questionnaire consisted of closed-ended questions with validity criteria to prevent the skipping of any questions, which increased the reliability of the results.

Malhotra and Birks (2000) define generalisability as “the degree to which a study based on a sample applies to the population as a whole”. If the study sample is correctly matched to the population at large to ensure the comparability of demographic characteristics, then it may be assumed that the findings are generalisable. Generalisability is important for ascertaining with confidence the degree to which the test results can be replicated. For this research, the sample was drawn from the student subject pool at HKBU. Although the use of student samples is considered restrictive when it comes to external validity, particularly with regard to generalisability, Yavas (1994) claims that student participants can serve as surrogates in certain situations such as the modelling of attitude-behaviour relationships. Sternthal et al. (1996) also point out that using a homogeneous sample can reduce inter-subject variance, which in turn enhances the likelihood of finding support for an explanation when that explanation is true. The sample size is determined by the number of treatment groups. Hair et al. (1998) recommend having at least 20 participants in each cell for within- and between-subject groups when testing using t-tests, ANOVA, ANCOVA and multivariate ANOVA. To achieve statistical power of 0.8, a sample size larger than 20 is needed; otherwise, type II error may result. There were at least 30 participants per treatment group in this research.
4.4.2 Validity

4.4.2.1 Threats to internal validity

The potential threats to the internal validity (Aaker, Kumar, & Day, 1998) of this research are as follows.

1. History: Events external to the experiment that affect participants’ responses.

 Present experiments: Since the history threat refers to any event other than the planned treatment event that occurs between the pre- and post-test measurement and influences the dependent variable, care was taken in the laboratory setting to ensure that there were no confounding effects between the pre- and post-intervention. In general, the history effect poses a threat only to single-group research designs, not to multi-group designs, and thus was not a concern in this research.

2. Maturation: Changes in respondents that are a consequence of time, such as aging or becoming hungry or tired.

 Present experiments: The experiments required a maximum of 30 minutes to complete, and maturation was thus not a concern.

3. Testing: The effects of taking one test on the results of a subsequent test.

 Present experiments: This factor was not applicable, as care was taken to ensure that no participants who took part in the pretest also participated in the main experiments.

4. Instrumentation: The measurement instrument may change with different interviewers.
Present experiments: This factor was not applicable, as only one measurement instrument was used in the experiments.

5. Statistical regression: Operates when groups are selected on the basis of extreme scores.

Present experiments: This factor was not applicable, as the experiments did not measure extreme cases.

6. Selection bias: An experimental group is systematically different in some relevant way from the population being studied.

Present experiments: There were more female than male participants in the experiments. However, women account for a greater proportion of both the Hong Kong and HKBU populations. Whilst the same may not be true in the world population as a whole, the experimental group did not differ from the HKBU population in terms of the gender make-up.

7. Mortality: Respondents drop out of the experiment while the research is in progress.

Present experiments: This factor was not applicable because only complete experiment data were considered. There were no drop-outs in any case.

4.4.2.2 Threats to external validity

External validity refers to the degree to which the results of a study can be generalised to and across populations, settings, times, outcomes and treatment variations. The major types of external validity are population validity, ecological validity, temporal validity, treatment variation validity and outcome validity, the first four of which are discussed in turn in the following.
i) Population Validity

If a study has population validity, its results can be generalised to individuals other than those involved in the study. The relevant issues are the extent to which the sample results can be generalised to other populations and whether they can be generalised to different kinds of people in the wider population.

- Generalisability from the sample to the wider population was not assured in this research although invitation to participate was sent to the entire student subject pool at HKBU and allocation into groups was by adopting random selection techniques, whilst cross-population generalisability can be assumed because the results apply to many different kinds of people. Although both types of population validity are important, some methodologists (such as Cook & Campbell, 1979) are more concerned about cross-population generalisability.

ii) Ecological Validity

Ecological validity is present to the degree that a result can be generalised across settings. Reactivity, i.e. an alteration in behaviour or performance that occurs as a result of awareness that one is participating in a study/being observed, is a threat to ecological validity. Reactivity is a problem for ecological validity because, if present, the study results may be generalisable only to those in an experimental setting, i.e. only to others also being observed. The participants knew they were in an experimental setting but they were not aware of what the study was being conducted for. This is an issue which most experimental research is prone to and an issue for this research too.

Another threat to ecological validity is the experimenter effect. It occurs when participants alter their behaviour/performance because of some unintentional
behaviour on the part of or characteristics of the researcher. To control for the experimenter effect in this study, the researcher sat quietly in a corner throughout the experiments and made herself as inconspicuous as possible.

iii) Temporal Validity

Temporal validity is the extent to which study results can be generalised over time. It does not apply to this research, as the experiments were conducted over the course of just one week.

iv) Treatment Variation Validity

Finally, treatment variation validity is the degree to which the results of a study are affected by variations in treatment. In this research, the treatment was administered by a single researcher, and this threat can thus be ignored.

The other potential threats to external validity (Parasuraman, Grewal, & Krishnan, 2004) were as follows.

1. Reactive bias: Participants exhibit abnormal or unusual behaviour simply because they are participating in an experiment.

 Present experiments: The artificiality of the experimental settings and arrangements does constitute a limitation in this research. To reduce its effect, control groups were created for comparison with the experimental groups.

2. Pretest-manipulation interaction bias: A special form of reactive bias that is unique to experiments relying on the pre-measurement of consumers, i.e. before they are exposed to the experimental manipulation. It arises when the
pre-measurement increases or decreases respondents’ sensitivity to the manipulation.

Present experiments: This factor was not applicable, as the pretest participants were different from the experimental participants.

3. Non-representative sample bias: Such bias occurs when the participants in an experiment are not representative of the larger population to which the results are to be generalised.

Present experiments: In the interests of internal validity, a homogeneous sample was used to reduce inter-subject variance. Hence, this bias could not be avoided. Future research could extend the sample coverage to improve the generalisability.

4.5 PRETESTS

Two pretests were conducted to select the variables for the main experiments.

4.5.1 Pretest-1

Pretest-1 was designed to select the following variables for the main experiments.

- 1 popular brand
- 1 popular event
- The 10 most salient attributes to represent brand image
- The 10 most salient attributes to represent event image

Ninety-six participants were randomly recruited from the HKBU student pool for the first pretest in exchange for extra course credit. The pretest selection of a
A popular brand or event was designed to ensure that the participants in the main experiments would have a strong prior image of the event/brand to increase confidence in the image transfer measure. The flowchart for Pretest-1 is depicted in Figure 2.

![Pretest-1 Flowchart](image)

Figure 2: Pretest-1 Flowchart.

Selecting a popular brand and popular event

Thirty-six randomly selected participants out of the 96 pretest participants took part in this section of the pretest. Gwinner (1997) suggests that certain event characteristics (e.g. size, history and venue) influence the event image. Furthermore, the events/activities open to sponsorship are broad, ranging from sporting events and outdoor activities to concerts, academic gatherings, social causes and research (Klein, 2000). In this research, three popular sporting events that university students in Hong Kong could be expected to have an image of were
selected: Formula 1 (F1) racing, the FIFA World Cup and the Hong Kong Rugby Sevens (7s). Sporting events were chosen because they account for the majority of sponsorship spending (more than 69% of all sponsorship expenditure in North America). Three popular brands were also selected: Christian Dior, Gucci and Carlsberg. Participants were asked to rate each brand/event in terms of its popularity and their knowledge of it on a 3-item, 7-point affective semantic scale. The scale was adapted from Kin, Allen and Kardes (1996), and has reported reliability of alpha = 0.95. The event/brand with the highest mean and lowest standard deviation (SD) across the three items were selected for the main experiments.

Selecting the attributes

As previously noted, brand image is defined in this thesis as “perceptions about a brand as reflected by the brand associations held in consumer memory”. For this part of the first pretest, the attributes thought to best describe the image that a brand conjured up in the minds of the participants when they saw the brand/event name on the screen were generated by the author. Sixty participants were asked to rate the chosen popular brand/event on a 20-item 7-point scale. To increase task saliency, only those attributes that could potentially describe the particular brand/event were included in the 20-item attribute list (Graeff, 1996). PCA in the form of exploratory factor analysis (EFA) was carried out on this 20-item scale to identify the components of the attribute list that best described the brand image. The same analyses were repeated for the event image. The 10 most useful brand image attributes and 10 most useful event image attributes were selected to create a 20-item, 7-point “image transfer scale” for the main experiments. The details are in section 5.5.3. This scale was then tested for reliability and dimensionality. The results are reported in the next chapter in section 5.4.1.
4.5.2 Pretest-2

The second pretest was designed to select the following variables for the main experiments.

- 1 neutral brand that may be conditioned by association with the brand affective stimuli using an appropriate process
- 1 neutral event that may be conditioned by association with the event affective stimuli using an appropriate process
- 4 affective stimuli for conditioning the neutral brand with prior affect by direct means
- 4 affective stimuli for conditioning the neutral event with prior affect by direct means
- 1 affective stimulus for conditioning the neutral brand with prior affect by indirect means
- 1 affective stimulus for conditioning the neutral event with prior affect by indirect means

The Pretest-2 flowchart is given in Figure 3.
Figure 3: Pretest-2 Flowchart.
Conditioned brands and events

It was essential for the main experiments to have one neutral brand and one neutral event that could be conditioned with prior affect via direct or indirect means as the experiment demanded. This neutral brand/event would act as the conditioned brand/event. The image transfer on this conditioned brand/event served as the dependent variable in the experiments. To avoid contamination by existing affect towards known brand/event names, this pretest included five fictitious brands and five fictitious events (Appendix 9). Participants were asked to rate each fictitious brand/event on the 7-point, 20-item (10 brand attributes + 10 event attributes) image transfer scale developed from the respondents answers in Pretest 1 (this scale was tested for reliability and unidimensionality, the details of which are reported in Sections 4.6 and 5.4.1). The brand/event with the most neutral (i.e. closest to the midpoint of the scale) and most normally distributed rating was selected to serve as the conditioned brand in the main experiments.

Affective stimuli

Once the neutral brand and neutral event had been selected, they needed to be conditioned to have prior affect. Prior affect was conditioned directly or indirectly through the use of affective stimuli. Adapting the methodology similar to Sweldens (2011) for evaluative conditioning procedure, repeated and simultaneous pairing of the brand/event with different affective stimuli (heterogeneous) but all of the same valance will allow for the affect transfer to be direct. Thus for direct affect transfer, four affective stimuli were used. Repeated and sequential pairing of the brand/event with its affective stimuli (homogeneous) would result in indirect affect transfer. Thus for indirect affect transfer, one affective stimuli was sufficient. Twelve
positively valenced images from the International Affective Picture System (IAPS; Lang, Bradley, & Cuthbert, 2005) were chosen for this part of the pretest (Appendix 9). Six of the images were of people with a sophisticated and glamorous appearance, and the other six depicted sporting activities that looked rugged and exciting. The pictures had relatively small standard deviations in their affective ratings. On the IAPS’s 9-point affective rating scale, the images scored above 6.5 for both sexes. The participants were asked to rate each of the 12 images on the 7-point, 20-item image scale from Pretest-1. Based on their means (highest) and SD (lowest), four images each were selected to act as the affective stimuli for the brand and event (for direct conditioning) in the main experiments. Of the four affective stimuli for the brand and event, one image was randomly chosen to act as the affective stimulus for indirect conditioning of the brand/event.

4.6 Image transfer operationalisation

As previously stated, this research examined brand/event image transfer that was specific to the mental image conjured up in the minds of the participants as expressed by the attributes. Recall that in Pretest-1, 20 attributes were selected to identify an image construct rated on how well it described the particular event/brand (1 = very well; 7 = not at all). Participants were then also asked how well the same attributes described a fictitious brand/event considered neutral. When examining the image transfer from event to brand, one would expect the image of a popular event to transfer on to a fictitious brand. Therefore, when the image of the brand was examined prior to sponsorship and then again after treatment, a difference was expected between the two, with a shift towards the image of the event. The absolute difference for the corresponding attributes was used to create an index for the image
transfer, with a larger number indicative of greater image transfer. This methodology was adapted from Gwinner (1997), wherein the sum of the absolute differences between the scores on the 20 items of the image attribute scale at Time 1 and Time 2 showed the strength of image transfer. For example, if the attribute “cool” scored 5 out of 7 prior to the intervention and 3 after it, then the absolute value of the difference was $|3-5| = 2$. The absolute differences for each attribute were summed to give an index. The larger the value of the index, the greater the degree of image transfer.

4.7 EXPERIMENTS

As noted, three experiments were carried out for this thesis. The first dealt with the bi-directionality of image transfer, investigates the influence of prior affect and influence of cue and its direction towards brand (event) on image transfer in conventional and reverse directions. The second investigated the asymmetrical nature of this bi-directional image transfer, and the third was designed as a blocking experiment with experimental and control groups to demonstrate that the existence of directly formed prior affect for the dependent variable blocked image transfer, as the new association was not learnt and was a redundant variable.

4.7.1 Experiment-1

The first experiment was designed to test for reverse image transfer, the role of affect in image transfer and the effect of cue direction on the image transfer process.
Participants and design: The experiment was conducted on 580 participants from the HKBU student pool in exchange for extra course credit or HKD50 in cash. A 3 x 3 full factorial design, with affect x 3 (neutral, direct and indirect affect) and cue direction x 3 (no cue, cue to event and cue to brand) was employed. Cue direction and affect type were the between-subject variables. The experiment was conducted in two sequential phases: a conditioning phase and a testing phase. A three-minute filler activity was administered between the two sections of the conditioning phase and then another between the conditioning and testing phases. There were three different types of filler activities; classifying given words as positive or negative, word formation using prefix/suffix and scrabble word finder. Figure 4 provides an overview of the Experiment-1 process.

Figure 4: Experiment-1 Flowchart.

The conditioning phase conditioned the participants to the brand or event (neutral or indirectly or directly). They were told that it was unlikely that they had ever seen the brand (event) and were then shown a slide-show/video featuring the brand/event
randomly combined with images. The combination of images with the brand (event) resulted in either indirect affect or neutral or direct affective conditioning for the brand (event). This methodology was adapted from Sweldens (2010) and Galli (2011), who recommended simultaneous exposure or exposure with temporal and spatial separation. Simultaneous and heterogeneous exposure to affective stimuli of the same valance results in a direct transfer of affect, whilst sequential and homogeneous exposure to the same affective stimulus leads to an indirect transfer of affect. Under heterogeneous exposure, there is repeated exposure to a number of affective stimuli but all of the same valance while in homogeneous exposure, there is repeated exposure to the same affective stimulus. In the sequential conditioning procedure, the conditioned stimulus (CS) i.e. brand/event name was presented in the centre of the screen for 4 s, followed by an inter-stimulus interval of 1 s (blank screen) and then the unconditioned stimulus (US) i.e. affective stimuli (AS) presented for 4 s. The inter-trial interval was 1 s, showing the same blank screen. This procedure was repeated four times. It guaranteed a slide show interval of 39 s in duration and an equal total presentation duration for the CS and US. The total time for the CS was 16 s. That for the US was also 16 s, and that for the inter-trial gap 7 s. See Figure 5.

Figure 5: Experiment-I Conditioning with Indirect Affect.
In the simultaneous conditioning procedure, the picture of the US (which covered the entire screen) was shown with the CS superimposed on the bottom of the US (US1) for 4 s. Next, there was a 2 s inter-trial interval consisting of a white screen indicating that image files were being downloaded from the network. The procedure was repeated for three additional CS-US combinations (US2, US3 and US4). The total experimental time was 24 s. It should be noted that the exposure time to the CS and US across the sequential and simultaneous presentations was equal i.e. 16 s. Once the conditioning phase was complete, participants’ mental image of the CS was assessed. The participants rated the brand/event image on a 20-item, 7-point scale. The 20 items were the 10 attributes of event image and 10 attributes of brand image created in Pretest-1.

![Figure 6: Indirect and Direct Affect Conditioning Procedure.](image)

The testing phase was conducted following a 3 x 3 full factorial design, with affect x 3 (neutral, direct and indirect affect) and cue direction x 3 (no cue, cue to event and cue to brand). The conditioned brands and events were randomly paired with each block of participants.
A sporting event, the Football World Cup (FWC), was chosen because of its long and rich history, and Gucci was chosen as the brand because it is a well-known and popular brand. It was expected that the student participants would be familiar with both, and the pre-test results indeed showed them to be the most familiar brand/event regardless of gender, age and nationality. It was important that participants had a strong mental image to ensure that image transfer would occur. The conditioned brand/event was then paired with its corresponding popular event/brand. Participants were randomly assigned to one of the treatment conditions. Randomisation ensured that the influence of individuals’ prior schemas would not bias the results in any given treatment.

Manipulation check: Manipulation was embedded in the scenario presented to the participants. Each experimental combination had one of two manipulation checks built into them. If the conditioning was by indirect or direct affect, the manipulation check was carried out by revaluation of the affective stimuli. A negative statement was made for the affective stimuli, and the student was asked to rate the image of the affective stimuli again. Because affective stimuli mediate the relationship between the brand (event), i.e. CS, and brand (event) image, i.e. UR, any
revaluation of the affective stimuli will influence the UR. For indirect affect, if the manipulation was successful, then there would be a significant difference in means between the UR at the end of the experiment and the UR after the manipulation check. However, in the case of direct affect, there should be no significant difference in the means of the image transfer before and after the revaluation. The second form of manipulation was cue directionality. If the experimental combination had a cue present, a cue manipulation check was conducted by repeating the cue direction statement and asking the participants to rate it on a 3-item, 7-point semantic scale ascertaining the direction of the cue. The scale was tested for reliability and unidimensionality, and the results are reported in the next chapter.

4.7.2 Experiment-2

The second experiment was designed to assess the asymmetrical nature of image transfer, and was conducted following a 2 x 3 full factorial design, with Image x 2 (brand image, event image) and cue direction x 3 (no cue, cue to event and cue to brand). Image and cue direction were the between-subject variables.

Participants and design: The experiment was conducted on 195 participants from the HKBU student pool in exchange for extra course credit or cash (HKD50). It consisted of three phases: a conditioning phase, testing phase and re-evaluation phase. There was a filler activity between the two sections of the first phase and between each of the phases.
Conditioning was achieved by exposing the participants to the brand/event (CS) with its affective stimuli (US) with temporal and spatial separation. Both the brand and event in this experiment were fictitious and were individually conditioned. The conditioned brand/event was then paired with its corresponding conditioned event/brand. Participants were randomly assigned to one of the treatment conditions.

The strength of the image transfer under various conditions in the conventional and reverse directions was examined to test H5. Because the image transfer comparison was between participants, ANCOVA was conducted to cater for the variance due to initial values of the derivative of image transfer. The pre-intervention score of the brand or event image, as appropriate, was chosen as the covariate. Demographic characteristics were not considered as covariates because they were found to have no effect on image transfer (see Section 5.3.1). ANCOVA was used because the inclusion of a covariate in the model can not only increase the power needed to detect group differences but also increase the precision of the estimates. This is possible if the covariate is correlated with the DV but not correlated with the IV of interest. In this case, the IVs of interest were brand image and event image, whilst the DV was image transfer. A difference in means between the conventional and
reverse image strengths would provide experimental evidence of asymmetrical image transfer.

Manipulation check: Manipulation was embedded in the scenario presented to the participants. Each experimental combination had two built-in manipulations checks. If the conditioning was by indirect affect, the manipulation check was carried out by a re-evaluation of the affective stimuli. A negative statement was made for the affective stimuli, and the student was then asked to rate the image of the conditioned stimuli again. Because affective stimuli mediate the relationship between the brand (event), i.e. CS, and brand (event) image, i.e. UR, any re-evaluation of those stimuli will influence the UR. If the manipulation was successful, then there would be a significant difference in means between the UR at the end of the experiment and the UR after the manipulation check. The second manipulation check concerned the cue and was conducted in the same manner as that in Experiment-1.

4.7.3 Experiment-3

The third experiment was designed to establish whether the introduction of a new variable, i.e. event (brand) image, in a sponsorship scenario was redundant when prior affect had been formed directly for the brand (event). In other words, it was designed to test whether image transfer was indeed blocked by the presence of prior affect formed directly for the dependent variable, as hypothesised (H3A, H3B).

Participants and design: Five hundred and thirty participants from the HKBU student pool took part in this experiment in exchange for extra course credit or cash
The experiment adopted a 2 (CS-US scheduling: sequential, simultaneous) x 2 (US status: same image [homogenous], different images but of the same valance [heterogeneous]) mixed design with the two factors manipulated between subjects. A re-evaluation of the affective stimuli manipulated within subjects served as the manipulation check. Traditional blocking experiments in psychology are carried out in a similar manner.

<table>
<thead>
<tr>
<th>Experimental Group</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS(A) - UR</td>
<td>CS(A+B) - UR</td>
<td>CS (B)</td>
<td></td>
</tr>
<tr>
<td>Control Group</td>
<td>-</td>
<td>CS(A+B) - UR</td>
<td>CS (B)</td>
</tr>
</tbody>
</table>

Table 1: Blocking Experimental Procedure.

The approach adopted in this research was designed to replicate the procedure shown in Table 1. The CS and UR for the conventional image transfer direction were as follows.

- **CS(A):** Brand and affective stimuli (US)
- **UR:** Brand image
- **CS(B):** Event image (with its affective stimuli)

It is similar for reverse image transfer too, with event replacing brand in the nomenclature and vice versa.

As discussed in the literature review, classical conditioning has been assessed as a means of shaping attitudes using conventional Pavlovian procedures in which a CS precedes a US. This CS-US arrangement eventually leads to a conditioned response after sufficient repetitions. The third experiment was conducted in this fashion to sidestep the debate over whether contingency awareness is a necessary condition.
and whether a sufficient number of repetitions ensures that participants are aware of the explicit pairing of the stimuli. The stance taken for this research is that Pavlovian conditioning is associative in nature, and an individual may or may not need to be cognisant of the CS-US arrangement. The experiment followed a between-subjects design to ensure no contamination of affect. It incorporated the four following combinations.

a) Combination 1: Heterogeneous + Simultaneous (HETRO + SIM) pairing of the brand (event) and its affective stimuli.

b) Combination 2: Homogeneous + Simultaneous (HOMO + SIM) pairing of the brand (event) and its affective stimuli.

c) Combination 3: Heterogeneous + Sequential (HETRO + SEQ) pairing of the brand (event) and its affective stimuli.

d) Combination 4: Homogeneous + Sequential (HOMO + SEQ) pairing of the brand (event) and its affective stimuli.

The testing procedure was the same for all four combinations. The procedure for Combination-1 is given here as an example for the conventional direction. The brand and its affective stimuli (CS(A)) were conditioned as HETRO+SIM to generate the brand image (UR) in Phase 1. The image was evaluated at the end of Phase 1. Then in Phase 2, the same CS(A) was shown in the same manner as in Phase 1, but there was an additional intervention in the form of the event image (CS(B)) and representation of a sponsorship arrangement. The brand image (UR) was evaluated at the end of Phase 2. In Phase 3, only the event image (CS(B)) was shown, and the brand image (UR) was again evaluated at the end of the phase. Participants assigned to the control group, as depicted in Table 1, were exposed only
to Phase 2 and Phase 3 of the experiment (skipping the learning Phase 1). Analysis was conducted to ascertain whether there was any difference between the control and experimental group results in Phase 3. If so, then this would identify CS(B) as a redundant variable and provide evidence of blocking. This procedure was repeated for reverse direction too.

Manipulation check: To verify the effectiveness of the re-evaluation manipulation, it was necessary to assess the participants’ affect towards all of the affective stimuli presented to them over the course of the experiment. An affective response scale comprising three semantic differential items was used to measure responses to the affective stimuli. This scale was also used by Kim, Allen and Kardes (1996) and Kim, Lim and Bhargava (1998). It has a reported reliability alpha of 0.95. The three semantic items are rated on a 5-point scale with endpoints labelled “extremely unpleasant” and “extremely pleasant”, “dislike very much” and “like very much” and “left me with a bad feeling” and “left me with a good feeling”. If the re-evaluation manipulation was effective, it would result in lower attitude scores for the re-evaluated positive affective stimuli than the standard positive affective stimuli.
CHAPTER 5: ANALYSIS AND RESULTS

5.1 Introduction

The data collected for this thesis using the quantitative research approach are presented in this chapter and analysed in accordance with the research objectives and to provide support for the hypotheses. The probability level of statistical significance was set at $p < .05$ for all data that did not violate the homogeneity of variances assumption and at $p < .01$ when Levene’s test for homogeneity of variances was found to be significant. For Welch’s test, a priori of p was set at $p < .01$. Scatter plots were also used to find outliers and marked for future reference.

5.2 Sampling and sampling error

A total of 1466 participants from the HKBU student pool (161 in the pretests and 1305 in the main experiments) enrolled in this research. Given a medium to large effect size, 30 participants per cell should lead to about 80% power (Cohen, 1988). Cohen’s conventions suggest that an effect size of .20 is small, .50 is medium and .80 is large. The number of observations in each cell in this research was at least 30 and, in some instances, was more than 60, thereby increasing the power of the tests and reducing error.

5.3 Demographic characteristics

The distribution of participants in the two pretests and three experiments was as follows.

1. Pretest-1: 96 participants
2. Pretest-2: 65 participants
3. Experiment-1: 580 participants

4. Experiment-2: 195 participants

5. Experiment-3: 530 participants.

Three sets of demographic data were collected for all participants:

A) Gender demographics

B) Age profile

C) Nationality

Demographics were not included as variables in any of the experiments, and participants were randomly assigned to the treatment conditions, which ensured demographic consistency across the treatment conditions.

5.3.1 Gender Demographics

A) Experiments-1 and -2 together involved 775 participants, 221 of whom were men (28.5%) and 554 (71.5%) of whom were women.

The number of female participants in the first two experiments was far greater than the number of males. Randomisation ensured that the ratio remained consistent across the experiment scenarios. The influence of gender on image transfer was also tested to ensure that it did not act as a moderator.

B) In Experiment-3, the number of participants was 530. Two participants failed to report their sex, and their data were thus excluded from analysis. This experiment was further divided into two sub-groups. The first sub-group was tested for image transfer to the brand and the second for image transfer to the event. The two sub-groups had very similar gender demographics, as shown in Table 2.
<table>
<thead>
<tr>
<th></th>
<th>Brand Image</th>
<th></th>
<th>Event Image</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Per cent</td>
<td>Frequency</td>
<td>Per cent</td>
</tr>
<tr>
<td>Males</td>
<td>93</td>
<td>34.57%</td>
<td>97</td>
<td>37.45%</td>
</tr>
<tr>
<td>Females</td>
<td>176</td>
<td>65.43%</td>
<td>162</td>
<td>62.55%</td>
</tr>
<tr>
<td>Total</td>
<td>269</td>
<td></td>
<td>259</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Experiment-3: Gender Demographics.

5.3.2 Age profile

The age profile of the participants in all three experiments was in line with the HKBU student population. In Experiments-1 and -2, 97.9% of the participants were between the ages of 18 and 24, and in Experiment-3 more than 93% fell into this age group.

5.3.3 Nationality

The majority (88.9%) of participants in Experiments-1 and -2 were from Hong Kong, with mainland Chinese participants accounting for 9.8% and other nationalities for just 1.3%. Experiment-3 had a similar participant profile. Most (84.1%) of the brand image sub-group participants were Hong Kong residents, whereas 12.6% were mainland Chinese residents and about 3% were of other nationalities. The majority (87.6%) of the event image sub-group was also made up of Hong Kong residents, with mainland Chinese and other nationalities accounting for 10.8% and 1.2%, respectively.
5.3.4 Demographic effect on image transfer

Mixed between-/within-subjects ANOVA was conducted to assess the effects of demographic characteristics on image transfer. The result in Table 3 shows the following;

<table>
<thead>
<tr>
<th>Model/Source</th>
<th>F-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>F(1, 745) = 0.55,</td>
<td>p = 0.45</td>
</tr>
<tr>
<td>Age</td>
<td>F(3, 745) = 0.44,</td>
<td>p = 0.72</td>
</tr>
<tr>
<td>Nationality</td>
<td>F(2, 745) = 0.51,</td>
<td>p = 0.46</td>
</tr>
<tr>
<td>Affect</td>
<td>F(2, 745) = 7.53,</td>
<td>p = 0.001*</td>
</tr>
<tr>
<td>Two-way interaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender x Age</td>
<td>F(1, 745) = 0.50,</td>
<td>p = 0.47</td>
</tr>
<tr>
<td>Gender x Nationality</td>
<td>F(2, 745) = 0.88,</td>
<td>p = 0.41</td>
</tr>
<tr>
<td>Gender x Affect</td>
<td>F(2, 745) = 2.71,</td>
<td>p = 0.07</td>
</tr>
<tr>
<td>Age x Nationality</td>
<td>F(2, 745) = 0.48,</td>
<td>p = 0.62</td>
</tr>
<tr>
<td>Age x Affect</td>
<td>F(4, 745) = 1.43,</td>
<td>p = 0.22</td>
</tr>
<tr>
<td>Nationality x Affect</td>
<td>F(3, 745) = 0.31,</td>
<td>p = 0.81</td>
</tr>
<tr>
<td>Three-Way interaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender x Age x Nationality</td>
<td>F(1, 745) = 0.65,</td>
<td>p = 0.42</td>
</tr>
</tbody>
</table>

Table 3: ANOVA - Demographics.

These results suggest that none of the demographic variables, i.e. age, nationality or gender, had any interaction or main effect, and thus can be assumed to have had no confounding effects in the main experiments.
5.4 Assessing reliability and validity

5.4.1 Reliability

The reliability of the various scales were tested via an investigation of the Cronbach’s alphas. Although a high alpha denotes internal consistency, it does not guarantee unidimensionality, which can only be ascertained through factor analysis. PCA was performed for this purpose. Reliability is obtained when measures are free from random error and capable of generating consistent results (Zikmund, 1994). The most widely used test of reliability is Cronbach’s alpha or coefficient alpha, which is calculated for each multi-item construct. Cronbach’s alpha values in this research were calculated using SPSS. The rule of thumb for a construct reliability estimate is that 0.7 or higher suggests good reliability. A very high degree of construct reliability indicates the existence of internal consistency, that is, that all of the measures consistently represent something. Reliability was calculated for all of the scales across the pretests and main experiments, with all values found to be in excess of 0.80, indicating that the data can be considered reliable. Table 4 presents the reliability results.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Cronbach’s alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affect for brand/event names</td>
<td>0.93</td>
</tr>
<tr>
<td>Image transfer</td>
<td>0.85</td>
</tr>
<tr>
<td>Affective stimuli</td>
<td>0.95</td>
</tr>
<tr>
<td>Cue directionality</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Table 4: Reliability Statistics.

EFA was then employed to check for the unidimensionality of the various scales used. The scales were semantic differential scales, and it was thus essential to confirm that no confounding factors were being inadvertently introduced and/or measured. For the scale measuring “affect for brand/event names”, 64.9% of the
total variance is explained by one factor. In combination with the high Cronbach’s alpha (0.93), the EFA results suggest that this scale can be considered unidimensional. See Table 5.

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>% of Variance</td>
</tr>
<tr>
<td>1</td>
<td>1.948</td>
<td>64.94</td>
</tr>
<tr>
<td>2</td>
<td>.807</td>
<td>26.90</td>
</tr>
<tr>
<td>3</td>
<td>.245</td>
<td>8.15</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.

Table 5: Test for Unidimensionality of Affect for Brand/Event Name Scale.

EFA was also carried out for the “affective stimuli scale” using PCA, revealing that 83% of the variance is explained by component 1. Hence, the affective stimuli scale does indeed demonstrate unidimensionality, as shown in Table 6.

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>% of Variance</td>
</tr>
<tr>
<td>1</td>
<td>2.50</td>
<td>83.34</td>
</tr>
<tr>
<td>2</td>
<td>.31</td>
<td>10.45</td>
</tr>
<tr>
<td>3</td>
<td>.19</td>
<td>6.20</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.

Table 6: Test for Unidimensionality of Affective Stimuli Scale.

For the scale measuring “cue directionality”, 75.4% of the total variance is explained by one factor. In combination with the high Cronbach’s alpha (0.88), the
EFA results suggest that this scale too is unidimensional. The details can be found in Table 7.

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>% of Variance</td>
</tr>
<tr>
<td>1</td>
<td>2.262</td>
<td>75.409</td>
</tr>
<tr>
<td>2</td>
<td>.449</td>
<td>14.967</td>
</tr>
<tr>
<td>3</td>
<td>.289</td>
<td>9.624</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.

Table 7: Test for Unidimensionality of Cue Directionality Scale

For the scale measuring “Image transfer”, it is expected that the scale measures two constructs, namely, image of brand and image of event. Therefore it is expected to show a two component solution. From the data below of the 7-point 20-item scale, it is clear that component 1 explains 45.9% of the total variance and component 2 explains 14.5% of the variance.

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>% of Variance</td>
</tr>
<tr>
<td>1</td>
<td>9.182</td>
<td>45.908</td>
</tr>
<tr>
<td>2</td>
<td>2.906</td>
<td>14.528</td>
</tr>
<tr>
<td>19</td>
<td>.225</td>
<td>1.125</td>
</tr>
<tr>
<td>20</td>
<td>.205</td>
<td>1.025</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.

Table 8a: Dimensionality of image transfer scale
5.4.2 Validity

Tests for the validity of the scales, including construct validity (convergent and discriminant validity), content or face validity, and criterion or nomological validity, are discussed in the following sub-sections.

5.4.2.1 Content validity

Hair et al. (2010) state that content or face validity needs to be established before conducting any theoretical testing. Content validity depends on the researcher’s judgment and expresses the consistency of items with the definition of their respective constructs. To assure content validity, some of the measures in this study were borrowed from existing scales for which validity had already been established. Additionally, the issue of content validity was also dealt with during the pre-testing phase, when the questionnaires were screened and tested by scholars in the HKBU Business School.

5.4.2.2 Construct validity

Construct validity comprises the convergent and discriminant validity of a construct. When convergent validity exists in a scale, the items associated with a construct share a high proportion of variance (Hair et al., 2010). There are several ways to assess the convergent validity of a scale. This study produced evidence of convergent validity because each item on the affective stimuli scale and each item chosen for the image transfer scale loaded significantly (more than 0.6) on its assigned factor (Hair et al., 2007). In addition, the Cronbach’s alphas for all constructs in the study were higher than the recommended limit of 0.7. Together, these results demonstrate that the scales had sufficient levels of reliability and unidimensionality, the items adequately reflected their corresponding constructs and all of the scales exhibited convergent validity.
To provide evidence that the constructs under study are unique and that each construct differs from the other constructs in the model, discriminant validity was also assessed in this research (Hair et al., 2010). To achieve discriminant validity, the Q sorting, or chi-square matrix or average variance extracted (AVE) estimate of each construct must be greater than the squared correlations between that construct and any other construct in the model, i.e. no other construct should explain it better than it does itself (Collins & Hussey, 2003). The items for the scale used to measure the latent construct, i.e. image of the brand or event, were constructed from EFA, indicating the discriminant validity of all constructs. The detailed results of the EFA used to select the scale items are presented in Section 5.5.3.
5.5 Pretests

As noted, the pretests were carried out on 161 participants selected from the HKBU student pool in exchange for extra course credit. The pretests involved selection of a popular brand, a popular event, sets of affective stimuli for the event and brand, a neutral brand name, a neutral event name and lists of attributes describing the brand image and event image. These items were then used in the main experiments.

5.5.1 Selection of popular brand/event

Reliability was established for the scale used to measure the popularity and awareness of the brand and event names. This 3-item, 7-point scale measured the popularity/awareness of the brand/event name on a semantic differential scale. The Cronbach’s alphas ranged from 0.82 to 0.97 (alpha > 0.80), meaning the scale can be considered reliable. (Table 9). The brand and event names with the highest mean and smallest SD were selected for the main study. These turned out to be Gucci (M = 6.26, SD = 0.81) and the FWC (M = 6.82, SD = 0.39), respectively.

<table>
<thead>
<tr>
<th>Description</th>
<th>Cronbach’s alpha</th>
<th>Grand mean</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christian Dior</td>
<td>0.90</td>
<td>5.33</td>
<td>39</td>
</tr>
<tr>
<td>Gucci</td>
<td>0.82</td>
<td>6.26</td>
<td>35</td>
</tr>
<tr>
<td>Carlsberg</td>
<td>0.97</td>
<td>4.17</td>
<td>42</td>
</tr>
<tr>
<td>Formula 1</td>
<td>0.97</td>
<td>3.05</td>
<td>39</td>
</tr>
<tr>
<td>Rugby Sevens</td>
<td>0.92</td>
<td>4.26</td>
<td>37</td>
</tr>
<tr>
<td>Football World Cup</td>
<td>0.93</td>
<td>6.82</td>
<td>38</td>
</tr>
</tbody>
</table>

Table 9: Cronbach’s Alphas and Means: Pretest of Event and Brand Names.
5.5.2 Selection of neutral brand/event

Five fictitious neutral brands and five fictitious neutral events were also used in a pretest to determine whether any of them conjured up any affect. The brand and event names with the lowest possible ratings on a 20-item, 7-point Likert scale were selected for the main experiment. The scale items were the attributes selected from the pretest for the corresponding popular event/brand. A list of brand names with their means, SDs and variance is presented in Table 10.

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Grand Mean</th>
<th>SD</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riva</td>
<td>37</td>
<td>4.18</td>
<td>0.79</td>
<td>0.62</td>
</tr>
<tr>
<td>Axiom</td>
<td>37</td>
<td>3.92</td>
<td>1.04</td>
<td>1.09</td>
</tr>
<tr>
<td>Geant</td>
<td>37</td>
<td>3.94</td>
<td>1.18</td>
<td>1.39</td>
</tr>
<tr>
<td>Wafi</td>
<td>36</td>
<td>3.17</td>
<td>0.89</td>
<td>0.79</td>
</tr>
<tr>
<td>Skylark</td>
<td>38</td>
<td>4.07</td>
<td>0.96</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Table 10: Pretest: Descriptive Statistics for Brand Name Selection.

The brand name Wafi had the lowest mean and an acceptable SD (M = 3.17, SD = 0.89), and was thus selected as the neutral brand name for the main experiment. A neutral brand name would allow the brand to be conditioned according to the requirements of the main experiment. Independent analysis of the means was also conducted to ascertain whether that of Wafi was statistically and significantly different than the other brand names, and this was found to be the case. A univariate test revealed a significant difference in means. Tukey’s post-hoc test showed Wafi to have a mean difference from Riva (mean difference = -1.01, p = 0.001, p<.05 two-tailed), Axiom (mean difference = -0.75, p = 0.024, p<.05 two-tailed), Geant (mean difference = -0.77, p = 0.02, p<.05 two-tailed) and Skylark (mean difference = -0.90, p = 0.003, p<.05 two-tailed). Wafi was then checked to make sure the affect was uncontaminated by any of the variables for sex, age and nationality, and no
main or interactive effect was found. Further details can be found in Appendix 14. Wafi was thus considered apt for use as the conditioned brand name in the main experiments, and was conditioned as the experimental scenario demanded.

The same analysis was conducted on the fictitious event names. From the list, IPL T-20 Challenge was selected as the conditioned event name, as it had the lowest mean (M = 3.80) and an acceptable SD (SD = 0.71), as shown in Table 9.

<table>
<thead>
<tr>
<th>Event Name</th>
<th>n</th>
<th>Mean</th>
<th>SD</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-festival</td>
<td>39</td>
<td>4.08</td>
<td>0.77</td>
<td>0.59</td>
</tr>
<tr>
<td>IPL T-20</td>
<td>37</td>
<td>3.80</td>
<td>0.84</td>
<td>0.71</td>
</tr>
<tr>
<td>Barsha</td>
<td>36</td>
<td>4.08</td>
<td>1.11</td>
<td>1.24</td>
</tr>
<tr>
<td>Jumeirah</td>
<td>36</td>
<td>3.86</td>
<td>1.17</td>
<td>1.37</td>
</tr>
<tr>
<td>Jaypee</td>
<td>43</td>
<td>4.22</td>
<td>0.96</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Table 11: Pretest: Descriptive Statistics for Event Name Selection.

A one-way ANOVA was also conducted to compare the difference in means between the five (5) fictitious events. The analysis revealed a significant difference in means. Tukey’s post-hoc test showed IPL T-20 to have a mean difference from V-festival = -0.28, p = 0.023, Barsha = -0.28, p = 0.022, Jumeriah = -0.06, p = 0.56 and Jaypee = -0.42, p = 0.007. While there was no significant difference in means between IPL and Jumeriah, either could have been chosen, however, IPL was chosen as it had a lower SD compared to Jumeriah.

A univariate test was then conducted to ascertain whether there were any main or interactive effects for sex, age or nationality with regard to the image of IPL T-20. No such effects were found (see Appendix 15). IPL T-20 was thus selected as the
conditioned event for the main experiments, and conditioned as needed by the experimental scenario.

5.5.3 Selection of attributes

For the popular brand and event names, Gucci and the FWC, a wide range of attributes were carefully selected based on the images that were conjured up in participants’ minds when they thought of each. The average person asked to describe their mental image of Gucci or the FWC would be expected to use these attributes. During the pretest, the participants rated Gucci and the FWC on separate 20-item, 7-point Likert scales. The most relevant mix of attributes were selected for use in the main experiments based on statistical analysis. Both attribute scales were subjected to PCA after assessing the suitability of the data for factor analysis. Inspection of the correlation matrix revealed the presence of several coefficients with values of 0.5 and above. The Kaiser-Meyer-Olkin value was 0.714 for the FWC and 0.668 for Gucci, exceeding the recommended value of 0.6. Bartlett’s test of sphericity reached statistical significance in both instances, thus supporting the factorability of the correlation matrix.

PCA revealed the presence of four and three components with eigenvalues exceeding 1 for the FWC and Gucci, respectively. Scree plots revealed a clear break after the second component in both cases, and it was thus decided to retain two components for further investigation. The two-component solution explains 55.7% (Component 1 = 46.5%, Component 2 = 9.2%) of the variance for the FWC and 57.3% (Component 1 = 43.2%, Component 2 = 14.1%) of that for Gucci. To aid in the interpretation of these two components, oblimin rotation was performed,
revealing the presence of a simple structure with both components showing a number of strong loadings. The component correlation matrix between Components 1 and 2 is a negative correlation of -0.313. The pattern and structure matrices for the FWC are displayed in Table 12, and those for Gucci in Table 13.

<table>
<thead>
<tr>
<th>Pattern Matrix</th>
<th>Structure Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Component</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Affluent</td>
<td>0.566</td>
</tr>
<tr>
<td>Aggressive</td>
<td>0.901</td>
</tr>
<tr>
<td>Appealing</td>
<td>0.753</td>
</tr>
<tr>
<td>Cool</td>
<td>0.518</td>
</tr>
<tr>
<td>Daring</td>
<td>0.513</td>
</tr>
<tr>
<td>Entertaining</td>
<td>0.835</td>
</tr>
<tr>
<td>Exciting</td>
<td>0.465</td>
</tr>
<tr>
<td>Exclusive</td>
<td>0.649</td>
</tr>
<tr>
<td>Adventurous</td>
<td>0.704</td>
</tr>
<tr>
<td>Glamorous</td>
<td>0.495</td>
</tr>
<tr>
<td>Influential</td>
<td>0.539</td>
</tr>
<tr>
<td>Masculine</td>
<td>0.574</td>
</tr>
<tr>
<td>Passionate</td>
<td>0.402</td>
</tr>
<tr>
<td>Prestigious</td>
<td></td>
</tr>
<tr>
<td>Rugged</td>
<td></td>
</tr>
<tr>
<td>Stimulating</td>
<td>0.748</td>
</tr>
<tr>
<td>Stylish</td>
<td></td>
</tr>
<tr>
<td>Successful</td>
<td></td>
</tr>
<tr>
<td>Thrilling</td>
<td></td>
</tr>
<tr>
<td>Tough</td>
<td></td>
</tr>
</tbody>
</table>

Extraction method: PCA; rotation method: oblimin

Table 12: Pretest: FWC Attribute Selection by PCA.
Table 13: Pretest: Gucci Attribute Selection by PCA.

5.5.4 Selection of affective stimuli

The affective stimuli for the main experiments were also selected during the pretests. Four images each of brand and event affective stimuli were selected from a list of 12 images chosen from IAPS (Appendix 9). All 12 images rated highly on the affect scale when tested to calibrate their affect with reference to the selected attributes. The four affective stimuli images selected as the brand affective stimuli rated very high on all 10 attributes chosen to describe a young, glamorous, cool and
feminine image and very low on the 10 attributes conveying a tough, rugged and masculine image. The reverse applied for the four selected event affective stimuli.

Four affective stimuli for event/brand were selected to allow conditioning of the brand/event under heterogeneous conditions. For homogeneous conditioning, only the one image that scored the highest mean and had the lowest SD was selected.

5.5.5 Reliability analysis of cue direction

The scenarios created for the various treatment groups included cue direction statements. The cue direction response was tested on a 3-item, 7-point Likert scale, and Cronbach’s alphas were ascertained for the various scenario statements, providing evidence that the cue direction given was in the hypothesised direction. Reliability was found to be in excess of 0.80 for all, as shown in Table 14.

<table>
<thead>
<tr>
<th>Direction</th>
<th>WAFI-IPL</th>
<th>GUCCI-IPL</th>
<th>WAFI-FWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Brand</td>
<td>0.92</td>
<td>0.91</td>
<td>0.90</td>
</tr>
<tr>
<td>To Event</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Table 14: Cue Direction Reliability.
5.6 Experiment-1

Experiment-1, as noted, was conducted on 580 participants from the HKBU student pool in exchange for extra course credit or a small financial incentive (HKD 50). There were a total of 18 treatment scenarios (Appendices Appendix 1), each with a unique combination of experimental variables. The scenarios were then further categorised into 10 groups for ease of administration, depending on whether they involved between- or within-subject variables. The combinations are shown in Appendix 2. Care was taken to prevent any of the participants who took part in the pretests from taking part in the main experiments.

The participants were randomly assigned to groups to ensure normality in distribution and the prevention of bias, and a count was kept to ensure that the number of participants per treatment condition was sufficient to achieve at least small effect size (0.2). As discussed earlier, the recommended size for this research was 30 or more per cell.

Of the 580 participants, 290 were tested for brand image transfer and 290 for event image transfer. Of the total number of participants, 192 were subjected to neutral prior affect and tested for either brand or event image transfer, whereas 196 were subjected to directly formed prior affect and 192 to indirectly formed prior affect. Table 15 shows the cross-tabulation of image and affect.
Table 15: Cross-tabulation: Dependent Variable (Image Transfer) and Affect.

With regard to cue direction, 194 of the 580 participants were given no cue direction, and 386 were given a cue direction to either the brand (194 participants) or event (192 participants). The details are given in Table 16.

Table 16: Cross-tabulation: Dependent Variable (Image Transfer) and Cue Direction.

Cross-tabulation between affect and cue direction revealed that 64 participants had neutral prior affect and were given no cue direction to work with. Another 66 were exposed to direct affect but no cue direction, whilst another 64 were exposed to indirect affect but no cue direction.

Of the 194 participants given a cue direction towards the brand, 64 had neutral prior affect, 66 were exposed to affective stimuli that created directly formed prior affect and 64 were exposed to affective stimuli that created prior affect caused by indirect methods. Of the 194 participants who were given a cue direction towards the event,
64 had neutral prior affect, and 64 each were exposed to directly and indirectly formed prior affect. The details are shown in Table 17.

<table>
<thead>
<tr>
<th>Cue Direction</th>
<th>No Cue</th>
<th>Cue to Brand</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutral affect</td>
<td>64</td>
<td>64</td>
<td>192</td>
</tr>
<tr>
<td>Direct Affect</td>
<td>66</td>
<td>66</td>
<td>196</td>
</tr>
<tr>
<td>Indirect Affect</td>
<td>64</td>
<td>64</td>
<td>192</td>
</tr>
<tr>
<td>Total</td>
<td>194</td>
<td>194</td>
<td>580</td>
</tr>
</tbody>
</table>

Table 17: Cross-tabulation: Affect and Cue Direction.

5.6.1 Manipulation check

Two manipulation checks were carried out with each participant in Experiment-1: cue direction manipulation and affective stimuli re-evaluation manipulation.

a) Cue direction

The three scenario combinations were tested to determine their differences in means. For the manipulation check to be successful, the cue directions as between-subject variables, i.e. direction to brand/direction to event, had to display significantly different means.

At the end of the testing phase, all participants were given at least one scenario statement with a cue direction that depended on the direction of the dependent variable being measured. For example, if the dependent variable was event image, the cue direction was towards the event. Experiment-1 had three brand-event pairings, namely, Wafi-IPL, Wafi-FWC and Gucci-IPL. The cue direction manipulation under this experimental condition was successful for all three
pairings. One-way between-group ANOVA was also performed, confirming a significant difference in means between the cue statements and thereby showing that the manipulation was successful. In other words, the participants were cognisant of statement directionality.

1. For the Wafi-IPL (brand-event) combination, there was a statistically significant difference in scores at p < 0.05, with F(1, 395) = 55.32, p = 0.00, when the cue was directed towards the brand (Wafi) (M = 2.67, SD = 1.58) rather than the event (IPL) (M = 4.04, SD = 1.83), although the magnitude of the difference was moderate (eta squared = 0.09).

2. For the Wafi-FWC (brand-event) combination, one-way ANOVA revealed that the manipulation was successful and that there was a significant difference in scores depending on the cue direction (towards Wafi: M = 2.76, SD = 1.75; towards FWC: M = 4.21, SD = 1.84); F(1,396) = 57.14, p = 0.000, i.e. p < 0.05), and the magnitude of the difference was large (eta squared = 0.12).

3. Finally, a significant difference in scores was also found for the Gucci-IPL (brand-event) combination (cue towards Gucci: M = 2.67, SD = 1.66; cue towards IPL: M = 4.13, SD = 1.82); F(1,395) = 60.18, p = 0.000, i.e. p < 0.05), and the magnitude of the difference was large (eta squared = 0.16).

These results demonstrate the success of the manipulation check on cue direction.

b) Affective stimuli

Of the 580 participants in Experiment-1, 258 answered a further series of questions to ascertain whether the manipulation of affect was also successful. For this manipulation to be deemed successful, no difference in means for the affective
stimuli should be found post- and pre-re-evaluation for the participants exposed to the direct affect re-evaluation, whilst a significant difference would need to be found in the case of exposure to the indirect affect re-evaluation. One hundred and thirty (130) of the 258 participants were tested for the direct affect manipulation and one hundred and twenty eight (128) for the indirect affect manipulation.

One-way repeated-measures ANOVA was conducted for the manipulation check of affect. An earlier manipulation to test the affective stimuli for re-evaluation, conducted during pre-test, was successful. Accordingly, it was expected that when the same affective stimuli were conditioned on the brand or event image and then re-evaluated, if the conditioning by direct means was successful, then there would be no significant difference because directly formed affect is more resilient. For indirectly formed prior affect, in contrast, the re-evaluation of the affective stimuli should have a negative effect on the brand/event image.

1. The brand or event image was tested in three time periods as a within-subjects variable, and the type of conditioning as a between-subjects variable. Analysis of the results for the direct affect manipulation revealed no significant differences arising from the re-evaluation effect pre- or post-re-evaluation, suggesting that the affective stimuli did indeed cause prior affect formation by direct means. Hence, the affective stimuli manipulation was deemed successful ($M_{T1} = 4.66$, $M_{T2} = 4.65$ and $M_{T3} = 4.51$; $F(1, 129) = 2.45$, $p = 0.32$, i.e. $p > 0.05$ [two-tailed]) and an eta squared = 0.28.

2. A manipulation check was also conducted for the case of conditioning being due to indirect affect. A significant difference arising from the re-evaluation
effect was found between the pre- and post-re-evaluation, thus confirming the success of this manipulation ($M_{T1} = 3.75$, $M_{T2} = 4.44$ and $M_{T3} = 2.91$), with $F(1, 127) = 2845.04$ and $p = 0.000$ ($p < 0.05$, two-tailed) and an eta squared value of 0.956 indicating a large size effect. This indicates that between M_{T1} and M_{T2} image transfer occurred, while between M_{T2} and M_{T3} the affective stimuli was revaluated due to the introduction of a negative affect. Thus the affective stimuli conditioning did indeed happen due to indirect affect and the manipulation check was successful.

5.6.2 Image transfer and reverse image transfer

Experiment-1 was designed to test H1A and H1B regarding image transfer from the event to the brand and vice versa. Data analysis was performed to test for bi-directional image transfer, i.e. image transfer took place from the event image to the brand image and also from the brand image to the event image.

During the experiment, the brand (event) image was ascertained on the 20-item image scale based on the attributes in the first instance (Time 1: pre-intervention). The intervention was carried out in the form of a sponsorship association. Subsequent to the intervention (Time 2: post-intervention), the image of the brand (event) was again ascertained. The difference in these before and after observations revealed the influence of the intervention. The control group underwent no intervention procedure and showed no difference in means.

Two-way between-subjects ANOVA was performed to test the bi-directional nature of image transfer: Image (brand image, event image) x Cue (presence or absence). The experiment was designed to control for prior affect and was held constant, i.e.
the participants had neutral prior affect for the fictitious brand or event to ensure that no confounding effects for affect contaminated the results. The ANOVA results revealed no interaction effects (image x cue: F (1,191) = 0.04; p = 0.84, i.e. p > 0.05), but the main effect of image transfer to the brand versus that to the event was significant (F(1, 191) = 8.79, p = .003, observed power = 0.84). The details are in Table 18.

<table>
<thead>
<tr>
<th>Model/Source</th>
<th>Main effect</th>
<th>Two-way interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td>F(1, 191) = 8.79, p = 0.003*</td>
<td>p = 0.003*</td>
</tr>
<tr>
<td>Cue</td>
<td>F (1, 191) = 7.23, p = 0.009*</td>
<td></td>
</tr>
<tr>
<td>Image x Cue</td>
<td>F(1, 191) = 0.04, p = 0.84</td>
<td></td>
</tr>
</tbody>
</table>

Table 18: ANOVA- Image x cue.

Further analysis revealed the mean value of the image transfer to the brand to equal 32.87 and that of the image transfer to the event to equal 27.37. These results suggest that when an individual is exposed to a sponsorship condition, that exposure not only causes the event image to be associated with the brand image, thereby altering the brand image, but the reverse is also true. Hence, image transfer occurs in both directions, and is thus bi-directional in nature. A t-test analysis of the pre- and post-intervention scores for brand image revealed a pre-intervention mean of 3.39 (SD = 1.091) and a post-intervention mean of 4.08 (SD = 1.15), with t(97) = -4.97, p = 0.013, i.e. p < 0.05 [two-tailed], and a mean increase in scores of 0.686 (95% CI = 0.97-0.40, eta squared = 0.44). Analysis of those for event image revealed a pre-intervention mean of 3.39 (SD = 1.20) and a post-intervention mean of 3.85 (SD = 1.12), with t(96) = -3.87, i.e. p < 0.005 (two-tailed), and a partial eta
squared value of 0.307. See Table 19. The foregoing results support H1A and H1B and provide evidence of the bi-directional nature of image transfer.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (pre-intervention)</td>
<td>3.39</td>
<td>1.09</td>
<td>3.39</td>
<td>1.20</td>
</tr>
<tr>
<td>2 (post-intervention)</td>
<td>4.08</td>
<td>1.15</td>
<td>3.85</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Table 19: Means and SDs of bi-directional Image Transfer.

5.6.3 Role of cue direction on image transfer process

Experiment-1 also tested H2A and H2B to ascertain the effect of cue direction on image transfer. A full-factorial design of 3 (direct affect, indirect affect and neutral affect) x 3 (cue to brand, cue to event and no cue) was adopted.

Using the methodology of Gwinner (1997), an image transfer index was created as the sum of the absolute differences between the scores on the 20 items of the image attribute scale at Times 1 and 2. For example, if the attribute “cool” scored 5 out of 7 prior to the intervention and 3 after it, then the absolute value of the difference was |(3-5)| = 2. The absolute differences for each attribute were summed to give an index. The larger the value of the index, the greater the degree of image transfer.

1.Two-way between-groups ANOVA was conducted to explore the influence of affect and cue direction on the image transfer to the brand, with the participants divided into groups according to the affect conditioning procedure and cue direction. A statistically significant interaction effect was found between affect and cue direction (F(4, 379) = 3.47, p = 0.008, i.e. p <
0.05), and the size effect measured by partial eta squared was small (0.035). Although the data revealed significant main effects, but due to the significant interaction effect, further simple effect analysis was performed prior to their interpretation. A graphical representation of the interaction is shown in Figure 9 below.

i. Simple effect analysis (Keppel & Zedeck, 1989) showed that a cue direction towards the brand significantly increased image transfer to that brand amongst participants who had neutral affect for the brand (M_{NoCue} = 25.72 versus M_{Brand} = 40.81; F(2, 379) = 11.52, p = 0.00, i.e. p < 0.001).

ii. A cue direction towards the brand had no effect on image transfer to it amongst those conditioned to have directly formed prior affect for the brand (M_{NoCue} = 27.76 versus M_{Brand} = 27.33; F(2, 379) = 0.011, p = 0.989, i.e. p > 0.05).

iii. A cue direction towards the brand had a significant effect resulting in increased image transfer to the brand when prior affect for the brand was formed indirectly (M_{NoCue} = 30.35 versus M_{Brand} = 33.70; F(2, 379) = 9.23, p = 0.009, i.e. p < 0.05). These results provide support for H2A, which posits that a cue directed towards a brand strengthens the transfer of image from event to brand. See Figure 9.
We may also represent the above data that demonstrates the effect on brand image with the cue directed to the brand. See Figure 10;

Figure 9: Strength of Image Transfer from Event to Brand with Cue Direction to Brand.

Figure 10: Strength of Image Transfer from Event to Brand with Cue Direction to Brand
2. The data were also tested in the reverse direction to determine the strength of the image transfer from brand to event in the conditions of neutral, directly formed and indirectly formed prior affect for the event and cue direction towards the event. Two-way between-groups ANOVA was performed to explore the effects of both affect and cue direction on image transfer to the event, with the participants divided into groups according to the affect conditioning procedure and cue direction. The results revealed a statistically significant interaction effect between affect and cue direction \((F(4, 378) = 2.803, p = 0.026, \text{i.e. } p < 0.05) \), although the size effect measured by partial eta squared was small \((0.029) \). Whilst the data revealed significant main effects, but due to presence the significant interaction effect, further simple effect analysis was performed prior to their interpretation.

i. This simple effect analysis showed that cue direction to event significantly increased the image transfer to the event of the subjects who had “neutral” affect for the event \((M_{\text{NoCue}} = 28.31 \text{ vs. } M_{\text{Event}} = 37.84; F(2, 378) = 4.59, p = 0.01 \text{ i.e. } p < 0.05) \).

ii. A cue direction towards the event had no influence on image transfer to it amongst participants who had been conditioned to have directly formed prior affect for the event \((M_{\text{NoCue}} = 22.515 \text{ versus } M_{\text{Event}} = 24.97; F(2, 378) = 1.24, p = 0.29, \text{i.e. } p > 0.05) \).

iii. A cue direction towards the event had a significant effect on image transfer to the event when the prior affect for the event
was formed indirectly ($M_{NoCue} = 28.31$ versus $M_{Event} = 33.68$; $F(2, 378) = 3.66$, $p = 0.02$, i.e. $p < 0.05$). These results provide support for H2B, which postulates that a cue direction towards the event strengthens the image transfer to the event. See Figure 12.

![Graph showing strength of reverse image transfer from brand to event with cue direction to event.](image)

Figure 11: Strength of Reverse Image Transfer from Brand to Event with Cue Direction to Event.

We may also represent the above data that demonstrates the effect on event image with the cue directed to the event. See Figure 12;
5.6.4 Role of affect on image transfer process

This part of the experiment was designed to test H3A and H3B and H4A and H4B. Theoretically, image transfer should be blocked when there is directly formed prior affect for the dependent variable, whereas the presence of indirectly formed prior affect for that variable should enhance image transfer.

Two-way mixed between within-subjects ANOVA was conducted on the data to compare the scores for brand or event image, as appropriate, at times T1 (prior to the intervention) and T2 (after the intervention). Analysis of the intervention’s effect on brand image revealed a significant interaction effect between the type of affect and time (Wilks’ lambda = 0.81, F(2,385) = 44.98, p < 0.001, partial eta squared = 0.19). Two-way mixed between within-subject ANOVA also revealed a
significant interaction effect between type of affect and time on event image (Wilks’ lambda = 0.8, F(2,384) = 39.1, p < 0.001, partial eta squared = 0.17). These results show that the degree of image transfer to the brand (event) differs depending on the type of prior affect for the brand (event).

a) Further simple effects analysis revealed a significant difference in brand image before and after the intervention when prior affect for the brand was either neutral (M_{Before} = 3.60 versus M_{After} = 4.27; Wilks’ lambda = 0.73, F(1, 384) = 138.6, p = 0.00, i.e. p < 0.001, partial eta squared = 0.265) or indirectly formed (M_{Before} = 3.62 versus M_{After} = 4.20; Wilks’ lambda = 0.93, F(1, 384) = 44.97, p = 0.00, i.e., p < 0.001; and eta square = 0.07). However, in the case of directly formed affect for the brand, there is no significant change in the image of the brand due to the intervention (M_{Before} = 3.59 versus M_{After} = 3.48; Wilks’ lambda = 0.995, F(1, 384) = 2.10, p = 0.15, i.e. p > 0.05). Therefore, it can be concluded that if prior affect for the brand is formed through direct means, the image transfer to the event is blocked. Event image is thus a redundant variable in this situation. Figure 13 provides a graphical representation of the image transfer under the different types of affect. These results provide support for hypothesis H3A.
b) When analysis was also performed in the reverse direction, it revealed a significant difference in the image of the event before and after the intervention when prior affect for the event image was either neutral ($M_{\text{Before}} = 3.59$ versus $M_{\text{After}} = 4.31$; Wilks’ lambda = 0.73, $F(1, 384) = 135.57$, $p = 0.00$, i.e. $p < 0.001$, partial eta squared = 0.26) or indirectly formed ($M_{\text{Before}} = 3.50$ versus $M_{\text{After}} = 4.46$; Wilks’ lambda = 0.89, $F(1, 384) = 44.97$, $p = 0.00$, i.e. $p < 0.001$, eta squared = 0.11). However, in the case of directly formed affect for the event, the intervention effected no significant change in the event image ($M_{\text{Before}} = 3.78$ versus $M_{\text{After}} = 3.71$; Wilks’ lambda = 0.998, $F(1, 384) = 0.59$, $p = 0.44$, i.e. $p > 0.05$). It can thus be concluded that if prior affect for the event is formed through direct means, the image transfer to the event is blocked. Brand image is thus a redundant variable in this situation, which provides support for H3B. Figure 14 provides the graphical representation of the image transfer under different conditions of affect.
a) The between-groups ANOVA results reported in an earlier section (5.6.4a,b) can also be interpreted in simple effect terms, that is, there is no significant difference in the strength of the image transfer to the brand between the neutral and indirectly formed affect for the brand conditions: $F(1,284) = 0.531$, $p = 0.467$, partial eta squared = 0.002. H4A is thus rejected. The above graph and data can also be represented as shown in Figure 15.
In contrast, a significant difference in the strength of the image transfer to the event was found between these two affect conditions for the event (F(1,283) = 4.63, p = 0.03, partial eta squared = 0.16), thus providing support for H4B. Please see Figure 16.
In sum it can be concluded that the presence of indirect affect for the brand has no effect on event image transfer to the brand, whereas in the case of reverse image transfer, the presence of indirect affect for the event enhances the brand image transfer to the event.
5.7 Experiment-2

The second experiment was designed to determine the existence of asymmetrical image transfer. Image transfer would be considered asymmetrical if it was found to be stronger to one side than the other. It was expected that image transfer would be stronger in the conventional than reverse direction. To ensure that there were no pre-experimental associations in the form of greater affinity for the independent variable (event/brand image) that might result in stronger or weaker image transfer in either direction, a fictitious brand and a fictitious event were selected for Experiment-2. One hundred and ninety-five students from the HKBU Business School participated in this experiment, and care was taken to ensure than none had also enrolled in the pretests or one of the other experiments.

One-way between-groups ANCOVA was conducted to compare the effectiveness of the interventions that resulted in image transfer. ANCOVA was used because inclusion of a covariate in the model can (a) increase the power needed to detect group differences and (b) improve the precision of the estimates. Both (a) and (b) are possible if the covariate is correlated with the DV and not correlated with the IV. The inclusion of the covariate allows for a reduction in the model’s mean squared error. This then results in an increase in F-ratios and a reduction in standard errors. Additionally, inclusion of the covariate provides estimates of the group means on the DV that statistically control or adjust for differences on the covariate. Preliminary checks were conducted to ensure that there was no violation of the assumptions of normality, linearity, and the homogeneity of variance (Levene’s test) and of the regression slopes, and to ensure the reliability of the covariate measure. The covariate selected was the pre-intervention score of the brand or event
image, as appropriate. This covariate is a continuous variable, and is significantly correlated with the DV. Its Cronbach’s alpha value of 0.92 indicates that it can be considered reliable. The asymmetry of image transfer was examined in all three cue conditions, i.e. the no cue, cue to brand and cue to event conditions. To proceed with ANCOVA, it was essential to test for the homogeneity of the regression slopes, i.e. the relationship between the covariate and the dependent variable, in other words, to ensure there was no relationship between the covariate and the experimental manipulation. This was done by finding the p-value of the interaction effect of the covariate (the initial image of the brand/event) and the grouping factor. In the no cue condition, the p-value of the interaction effect of the covariate and grouping factor/IV was checked as a test of regression slope homogeneity. The result for the interaction term of the covariate and image transfer (DV) was \(F(1,61) = 0.60 \), with \(p = 0.440 \), i.e. \(p > 0.05 \). It was therefore concluded that ANCOVA could be carried out for the no cue treatment condition.

One-way between-groups ANCOVA was accordingly conducted to compare the effectiveness of the image transfer. After controlling for the pre-intervention scores, a significant difference between the two groups was found in their post-intervention scores on the image transfer scale (\(F(1,61) = 4.54 \), \(p = 0.037 \), \(p < 0.05 \) two-tailed, partial eta squared = .07. The degree of image transfer to the brand was greater than that to the event, with all other conditions being held the same. The image transfer to the brand and event has a mean index (adjusted for the covariate) of \(M_{\text{Brand}} = 33.94 \) and \(M_{\text{Event}} = 27.53 \), respectively, offering support for H5.
The analysis was further extended to include cue direction to the brand and to the event. In the case of a cue directed towards the brand, the test for homogeneity of the regression slopes was also run using a univariate test. The interaction term between the covariate and the grouping variable had $F(1, 61) = 0.974$, with $p = 0.327$, i.e. $p > 0.05$. It was therefore concluded that ANCOVA could be performed for the treatment condition when the cue direction was towards the brand. The ANCOVA results show that there was a significant difference in means between the image transfer to the brand and that to the event ($F(1, 61) = 4.65$, $p = 0.035$, i.e. $p < 0.05$, partial eta squared = 0.069). The image transfer to the brand and event has a mean index, adjusted for the covariate, of $M_{Brand} = 34.61$ and $M_{Event} = 26.26$, respectively. Thus, image transfer is also asymmetrical in this condition, providing support for H5. See Figure 17.

![ASYMMETRICAL IMAGE TRANSFER](image)

Figure 17: Asymmetrical Image Transfer.

Turning to cue directed towards the event, the test for homogeneity of the regression slopes was again run. The result for the interaction term between the covariate and
the grouping variable (image transfer) was $F(1,60) = 1.946$, with $p = 0.168$, i.e. $p > 0.05$. Thus, ANCOVA could also be carried out for the treatment condition when the cue was directed towards the event.

A significant difference in means was found between image transfer to the brand and image transfer to the event after adjusting for the presence of the covariate ($F(1,60) = 2.84$, $p = 0.048$, i.e. $p < 0.05$, and partial eta squared = 0.014. After adjusting for the covariate scores, the adjusted means of image transfer to the brand and event were $M_{\text{Brand}} = 30.80$ and $M_{\text{Event}} = 27.04$, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Brand image</th>
<th></th>
<th></th>
<th>Event image</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Mean</td>
<td>SD</td>
<td>n</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Cue absent</td>
<td>33</td>
<td>33.66</td>
<td>9.77</td>
<td>32</td>
<td>27.81</td>
<td>15.87</td>
</tr>
<tr>
<td>Cue to brand</td>
<td>33</td>
<td>34.60</td>
<td>10.84</td>
<td>33</td>
<td>26.48</td>
<td>12.11</td>
</tr>
<tr>
<td>Cue to event</td>
<td>32</td>
<td>31.47</td>
<td>10.22</td>
<td>32</td>
<td>27.37</td>
<td>13.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Interaction effect</th>
<th>Adjusted mean</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>p</td>
<td>eta squared</td>
<td>Brand</td>
</tr>
<tr>
<td>Cue absent</td>
<td>4.54</td>
<td>0.037</td>
<td>0.068</td>
<td>33.94</td>
</tr>
<tr>
<td>Cue to brand</td>
<td>4.65</td>
<td>0.035</td>
<td>0.069</td>
<td>34.61</td>
</tr>
<tr>
<td>Cue to event</td>
<td>2.84</td>
<td>0.048</td>
<td>0.014</td>
<td>30.80</td>
</tr>
</tbody>
</table>

Table 20: ANCOVA Results for Asymmetrical Image Transfer.

The foregoing results demonstrate that image transfer is asymmetrical in nature, i.e. it is stronger in the conventional than reverse direction and supports H5.
5.8 Experiment-3

Experiment-1 revealed that in the case of directly formed affect for the brand or event, image transfer does not occur regardless of whether a cue is present or absent or directed towards the event or brand. The principles of traditional blocking experiments in the psychology arena were then applied to ascertain whether the intervention in the form of directly formed affect was the cause of this lack of image transfer. Five hundred and thirty participants took part in Experiment-3, 270 of them in the brand image study and 259 in the event image study. One participant’s data were rejected. Experiments were conducted on the blocking of image transfer to the brand and event.

5.8.1 Manipulation check: Re-evaluation of the affective stimuli

To ascertain whether the methodology had been correctly applied in conditioning the brand or event with its respective affective stimuli, these stimuli were re-evaluated. They were first tested in the pre-test condition and then subsequently within each experiment. Two affective stimuli for the brand and two for the event were randomly chosen from the initial pool of affective stimuli selected after the pre-test phase. The participants were shown the four brand and event affective stimuli and asked to rate their mental images of them on a 7-point scale. Following a filler activity, the same participants were then asked to rate the stimuli again on the same scale, but this time two of those stimuli were accompanied by written statements designed to destroy the positive affect they had previously produced.
One-way between-groups ANOVA was then conducted to determine the effect of the foregoing manipulation as a manipulation check. It identified a statistically significant difference at the p < 0.05 level in the manipulation scores (F(1, 1046) = 918.22, p = 0.00), and the actual difference in mean scores was quite large. The effect size, calculated using eta squared, was 0.47, and thus can also be considered large. The images in the form of affective stimuli were labelled from 1 to 4. Post-hoc analysis showed images 1 and 4 to have a significant difference in their scores. This manipulation check was thus deemed successful, as the participants’ correctly reevaluated only those images that had their positive affect destroyed by the negative statements.

5.8.2 Blocking of event image transfer to brand

In Experiment-1, the conditioning for directly formed prior affect was carried out by pairing the dependent variable with its affective stimuli through heterogeneous + simultaneous exposure. That for indirectly formed prior affect was carried out by pairing the affective stimuli and dependent variable through homogeneous + sequential exposure. Two additional pairing conditions were introduced in Experiment-3: i) heterogeneous + sequential pairing and ii) homogeneous + simultaneous pairing.

The nomenclature used for this experiment is as follows.

- **HE** = Heterogeneous images with the same affective rating
- **HO** = Homogenous image
- **SE** = Sequential pairing of the affective stimuli with the brand/event.
- **SI** = Simultaneous pairing of the affective stimuli with the brand/event.
The participants were randomly assigned to one of the four treatment conditions, as shown in Table 23.

<table>
<thead>
<tr>
<th>Treatment Condition</th>
<th>Experimental group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Heterogeneous + sequential pairing (HESE)</td>
<td>34</td>
<td>32</td>
</tr>
<tr>
<td>2 Heterogeneous + simultaneous pairing (HESI)</td>
<td>40</td>
<td>32</td>
</tr>
<tr>
<td>3 Homogeneous + sequential pairing (HOSE)</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>4 Homogeneous + simultaneous pairing (HOSI)</td>
<td>33</td>
<td>32</td>
</tr>
</tbody>
</table>

Table 21: Experiment-3 Grouping.

The groups were between 28% and 35% male, and the majority of the participants in all four groups (in excess of 90%) were in the 18-24 age bracket. At least 80% of the participants were Hong Kong nationals, and the remainder were from mainland China or of another nationality. Randomisation ensured consistency across the groups and between the experimental and control groups.

The first task was to establish under which of the four experimental conditions image transfer occurs. The second task was, in those instances in which image transfer did not occur, to make a comparison between the experimental and control group using a between-subjects design to reveal whether image transfer did not occur because of the intervention and to provide evidence of the blocking phenomenon.

A paired-samples t-test was conducted at a global level and at an attribute level to evaluate the influence of the intervention on participants’ scores of image transfer to the brand.
A paired-samples t-test at the global level showed a statistically significant difference in means between Phases 1 and 3 in one of the four conditions.

- In the HESE condition, there was significant difference in means from Phase 1 (M = 4.68, SD = 0.88) to Phase 3 (M = 4.18, SD = 0.93); t(32) = 3.1, p = 0.01, i.e. p < .05 (two-tailed), and the mean difference (mean difference = 0.50, 95% CI: -0.09 to 0.33) was large (eta squared = 0.34), indicating no image transfer and no possible occurrence of blocking.

- In the HESI condition, no significant difference in means from Phase 1 (M = 4.26, SD = 0.67) to Phase 3 (M = 4.24, SD = 0.30) was found, t(32) = 1.3, p = 0.36, i.e. p > .05 (two-tailed), and the mean difference (mean difference = 0.02, 95% CI: -0.05 to 0.18) was very small (eta squared = 0.06), which indicates that no image transfer occurred and there is the possibility that blocking is taking place.

- In the HOSE condition, there was a significant difference in means from Phase 1 (M = 3.81, SD = 1.00) to Phase 3 (M = 4.40, SD = 0.91); t(31) = -3.6, p = 0.001, i.e. p < .05 (two-tailed), and that difference (mean difference = 0.59, 95% CI: -1.07 to -0.30) was large (eta squared = 0.30). This condition thus shows definite image transfer and no occurrence of blocking.

- Finally, the HOSI condition also revealed a significant difference in means from Phase 1 (M = 3.61, SD = 0.9) to Phase 3 (M = 4.20, SD = 0.8); t(32) = -2.26, p = 0.02, i.e. p < .05 (two-tailed), and that difference (mean difference = -0.59, 95% CI: -0.57 to -0.030) was moderate (eta squared = 0.18). This condition, too, shows definite image transfer and no occurrence of blocking.
For paired-sample t-test at the attribute level, a statistically significant difference was found between the means from Phase 1 and Phase 3 (the three Phases are as described in the methodology section 4.8.3 and in Table 1) in one of the four conditions, as shown in Table 22.

a) In the HESE condition, there was a significant difference in means from Phases 1 to 3 across 13 (p < .05) of the 20 attributes, indicating the occurrence of image transfer and no blocking.

b) In the HESI condition, there was no significant difference in means from Phases 1 to 3 for any of the 20 attributes, which all had values of p >.05 (two-tailed). There is a lack of image transfer in this condition, perhaps indicative of blocking, which needed to be ascertained by comparison with the control group.

c) In the HOSE condition, a significant difference in means was found from Phase 1 to Phase 3, with 16 attributes having p-values equal to or less than .05 (two-tailed), thus demonstrating definite image transfer and no blocking.

d) In the final condition, HOSI, a significant difference in means was also found from Phase 1 to Phase 3 for 16 of the attributes, with p < .05 (two-tailed), again demonstrating definite image transfer and no blocking.
Table 22: Experiment-3: Image Transfer to Brand between Treatment Groups (p-values).

<table>
<thead>
<tr>
<th>Adjective</th>
<th>HESE</th>
<th>HOSE</th>
<th>HESI</th>
<th>HOSI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t</td>
<td>Sig. (2-tailed)</td>
<td>t</td>
<td>Sig. (2-tailed)</td>
</tr>
<tr>
<td>Adventurous</td>
<td>-2.86</td>
<td>.01</td>
<td>-5.49</td>
<td>.00</td>
</tr>
<tr>
<td>Aggressive</td>
<td>-5.02</td>
<td>.00</td>
<td>-5.56</td>
<td>.00</td>
</tr>
<tr>
<td>Appealing</td>
<td>-.09</td>
<td>.93</td>
<td>-2.10</td>
<td>.04</td>
</tr>
<tr>
<td>Charming</td>
<td>3.66</td>
<td>.00</td>
<td>-.75</td>
<td>.46</td>
</tr>
<tr>
<td>Cool</td>
<td>-.91</td>
<td>.37</td>
<td>-3.50</td>
<td>.00</td>
</tr>
<tr>
<td>Daring</td>
<td>.77</td>
<td>.45</td>
<td>-2.52</td>
<td>.02</td>
</tr>
<tr>
<td>Elegant</td>
<td>6.97</td>
<td>.00</td>
<td>1.05</td>
<td>.30</td>
</tr>
<tr>
<td>Entertaining</td>
<td>-.91</td>
<td>.37</td>
<td>-3.58</td>
<td>.00</td>
</tr>
<tr>
<td>Extroverted</td>
<td>-.80</td>
<td>.43</td>
<td>-4.00</td>
<td>.00</td>
</tr>
<tr>
<td>Exciting</td>
<td>-3.09</td>
<td>.00</td>
<td>-4.49</td>
<td>.00</td>
</tr>
<tr>
<td>Feminine</td>
<td>4.73</td>
<td>.00</td>
<td>2.24</td>
<td>.03</td>
</tr>
<tr>
<td>Glamorous</td>
<td>4.06</td>
<td>.00</td>
<td>-.84</td>
<td>.41</td>
</tr>
<tr>
<td>Influential</td>
<td>-.47</td>
<td>.64</td>
<td>-2.37</td>
<td>.02</td>
</tr>
<tr>
<td>Masculine</td>
<td>-3.89</td>
<td>.00</td>
<td>-6.15</td>
<td>.00</td>
</tr>
<tr>
<td>Passionate</td>
<td>-3.53</td>
<td>.00</td>
<td>-4.02</td>
<td>.00</td>
</tr>
<tr>
<td>Prestigious</td>
<td>.71</td>
<td>.48</td>
<td>-2.69</td>
<td>.01</td>
</tr>
<tr>
<td>Rough</td>
<td>-5.07</td>
<td>.00</td>
<td>-3.01</td>
<td>.01</td>
</tr>
<tr>
<td>Stylish</td>
<td>3.72</td>
<td>.00</td>
<td>.85</td>
<td>.40</td>
</tr>
<tr>
<td>Successful</td>
<td>-.75</td>
<td>.46</td>
<td>-3.76</td>
<td>.00</td>
</tr>
<tr>
<td>Tough</td>
<td>-4.92</td>
<td>.00</td>
<td>-4.80</td>
<td>.00</td>
</tr>
<tr>
<td>Trendy</td>
<td>4.53</td>
<td>.00</td>
<td>.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

To retain the methodology in which the sum of the absolute differences between each attribute represents image transfer as a continuous dependent variable, one-way ANOVA was carried out between the four treatment conditions and image transfer. There was a significant difference at the $p < 0.05$ level in the image transfer scores for the four treatment groups: $F(3, 136) = 30.59, p = 0.000$. In addition to reaching statistical significance, the actual difference in between-group mean scores was also very large. The effect size, calculated using eta squared, was 0.406. Post-hoc comparisons using Tukey’s HSD test indicated that the mean score of HESI ($M = 3.35, SD = 8.90$) was significantly different from that of the three other groups, HESE ($M = 30.32, SD = 15.71$), HOSE ($M = 34.42, SD = 18.57$) and HOSI.
(M = 35.84, SD = 23.05), although there was no statistically significant difference between these three groups (see Figure 18).

![Figure 18: Image Transfer to Brand for the Four Treatment Conditions.](image)

It was therefore established that in the case of the HESI condition of affect formation, there is insignificant transfer of image from the event to the brand.

To confirm that the newly introduced variable (i.e. event image) was a redundant variable, the data for these conditions were compared between the experimental and control groups. Between-groups ANOVA was conducted to compare the image transfer scores at the end of Phase 3 between the experimental group (whose participants had undergone prior affect formation for the brand when the affective stimuli were conditioned using HESI methodology) and the control group (whose participants had not been exposed to prior conditioning i.e. phase 1), and a significant difference was found (experimental group: M = 4.95, SD = 0.22; control group: M = 4.34, SD = 0.74; F(1, 70) = 23.92, p = 0.000 [p < 0.05, two-tailed]). The effect size (calculated using eta squared) was 0.255, which, using the
commonly used guidelines proposed by Cohen (1988, pp. 284-7), can be considered large.

These results provide support for H3A, which posits that, under directly formed affect for the brand, image transfer is blocked even when the event image is introduced under a sponsorship arrangement.

5.8.3 Blocking of brand image transfer to event

The foregoing tests were repeated for image transfer to the event, with 259 participants taking part. Four study conditions were created in a between-subjects design. The nomenclature is the same as that in the previous section. There were 64-65 participants in each treatment group, with approximately half of each in a control group.

Across the treatment conditions, 33-37% of participants were men, and the majority (more than 95%) of the participants in all four groups were in the 18-23 age bracket. At least 85% of the participants were Hong Kong nationals, with the remainder made up of mainland Chinese and other nationals. The data were consistent across all four experimental groups and between the experimental and control groups.

As before, the first task was to establish in which of the four treatment conditions image transfer occurred. A paired-samples t-test was conducted at the global level to evaluate the intervention’s effect on the participants’ scores on image transfer to the event, with a statistically significant difference in means found between Phases 1 and 3 in two of the four conditions.
• In the HESE condition, there was no significant difference in means from Phase 1 \((M = 4.62, \ SD = 0.83)\) to Phase 3 \((M = 4.49, \ SD = 0.91)\); \(t(31) = 1.15, \ p = 0.258\), i.e. \(p > .05\) (two-tailed), and the mean difference (mean difference = 0.16, 95% CI: -0.12 to 0.43) was very small (eta squared = 0.04), indicating no image transfer and the possible occurrence of blocking.

• In the HESI condition, no significant difference in means from Phase 1 \((M = 4.36, \ SD = 0.60)\) to Phase 3 \((M = 4.24, \ SD = 0.50)\) was found, \(t(32) = 1.43, \ p = 0.16\), i.e. \(p > .05\) (two-tailed), and the mean difference (mean difference = 0.12, 95% CI: -0.05 to 0.29) was very small (eta squared = 0.06), which indicates that no image transfer occurred and there is the possibility that blocking is taking place.

• In the HOSE condition, there was a significant difference in means from Phase 1 \((M = 3.71, \ SD = 1.05)\) to Phase 3 \((M = 4.40, \ SD = 0.91)\); \(t(31) = -3.667, \ p = 0.001\), i.e. \(p < .05\) (two-tailed), and that difference (mean difference = 0.69, 95% CI: -1.07 to -0.30) was large (eta squared = 0.30). This condition thus shows definite image transfer and no occurrence of blocking.

• Finally, the HOSI condition also revealed a significant difference in means from Phase 1 \((M = 3.70, \ SD = 0.98)\) to Phase 3 \((M = 4.00, \ SD = 0.83)\); \(t(32) = -2.26, \ p = 0.031\), i.e. \(p < .05\) (two-tailed), and that difference (mean difference = -0.30, 95% CI: -0.57 to -0.030) was moderate (eta squared = 0.14). This condition, too, shows definite image transfer and no occurrence of blocking.
A paired-samples t-test was also carried out at the attribute level for brand image blocking (see Table 23)

i) In the HESE condition, a significant difference in means from Phases 1 to 3 was found across 12 (p-value < .05) of the 20 attributes, indicating the occurrence of image transfer and no blocking.

ii) In the HESI condition, there was no significant difference in means from Phases 1 to Phase 3, and only three of the 20 attributes had p-values < .05 (two-tailed). This condition shows the possible lack of any image transfer, perhaps providing evidence of blocking, although that needs to be ascertained for certain through comparison with the control group.

iii) In the HOSE condition, there was a significant difference in means from Phases 1 to 3, with 16 attributes having p = < .05 (2-tailed). This condition thus exhibits definite image transfer and no blocking.

iv) Finally, in the HOSI condition, there was a significant difference in means from Phases 1 to 3 for 12 of the attributes, with p < .05 (two-tailed), indicating definite image transfer and no blocking.
One-way ANOVA was carried out between the four treatment conditions and image transfer, revealing a significant difference at the p < 0.05 level in the image transfer scores for the four treatment groups: F(3, 126) = 18.16, p = 0.000. Although reaching statistical significance the actual difference in the between-group mean scores was moderate. The effect size, calculated using eta squared, was 0.301. Post-hoc comparisons using Tukey’s HSD test showed the mean score of HESI (M = 11.30, SD = 13.07) to differ significantly from that of three other groups, HESE (M = 27.87, SD = 11.35), HOSE (M = 33.90, SD = 14.22) and HOSI (M = 30.42, SD = 14.92), between which there was no statistically significant difference. These
results clearly show that in the HESI event-conditioning condition, image transfer to the event is blocked.

![Image Transfer to Event](image.png)

Figure 19: Image Transfer to Event for the Four Treatment Conditions

It is therefore established that image transfer to event is blocked in both the HESI and HESE conditions of affect formation, with insignificant transfer of image from brand to event. The data in these conditions were then compared between the experimental and control groups.

The results recorded at the end of Phase 3 between the experimental and control groups were analysed by means of between-groups ANOVA for these two conditions.

- Between-groups ANOVA was performed to compare the image transfer scores of participants who had undergone prior affect formation for the event when the affective stimuli were conditioned using heterogeneous and
sequential methodology with those of participants who had not been exposed to such conditioning. There was no significant difference in the image transfer scores between the HESE conditioning (M = 4.47, SD = 0.91) and no prior conditioning (M = 4.50, SD = 1.22) groups: F(1,62) = 0.013, p = 0.908 (p > 0.05, two-tailed). The effect size, as measured by eta squared, was 0.0002 and can thus be considered negligible. Hence, the intervention was not the cause of the lack of image transfer in this condition.

- Between-subjects ANOVA was conducted to compare the image transfer scores of participants who had undergone prior affect formation for the event when the affective stimuli were conditioned using heterogeneous and simultaneous methodology with those participants not exposed to such conditioning, and a significant difference was found (HESI conditioning: M = 4.24, SD = 0.50; no prior conditioning: M = 4.63, SD = 0.78; F(1,63) = 5.76, p = 0.019, i.e. p < 0.05 [two-tailed]). The effect size, computed using eta squared, was 0.11, which is moderate based on the commonly used guidelines proposed by Cohen (1988).

The foregoing results demonstrate that the intervention in the form of heterogeneous and simultaneous conditioning was the factor causing the significant difference between the experimental and control groups. These results provide support for H3B, which posits that image transfer is blocked in the case of directly formed affect for the event image. They are summarised in Table 24.
<table>
<thead>
<tr>
<th>CS(A)</th>
<th>How affect is formed</th>
<th>Image Transfer to brand/event</th>
<th>Blocking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HESI</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>HESE</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>HOSI</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>HOSE</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>

Table 24: Summary of Blocking of Brand/Event Image.
CHAPTER 6: DISCUSSION AND THEORETICAL IMPLICATIONS

Discussion of hypothesis testing results

This section discusses the results of the various hypotheses tested. These hypothesis describe the association between the variables of prior affect formed directly, by indirect conditioning, neutral affect conditions, in the presence or absence of a cue, and with the cue directed towards the brand or event, on the transfer of image from event to brand and vice versa.

This research extends ANT and their role in describing how and why image transfer occurs in sponsorship conditions. It was hypothesised that an association is not in itself a sufficient condition for the occurrence of image transfer; our understanding of sponsorship needs to be extended to include the presence or absence of prior affect to explain why image transfer occurs or fails to occur. A lack of directly formed prior affect for the brand (event) is a necessary condition for image transfer to take place from the event (brand) to the brand (event). The results of the data analysis herein provide a clearer understanding of the image transfer process.

6.1 Effect of pairing a brand with an event on image transfer (conventional and reverse)

Previous research has attempted to describe how sponsorship affects consumer perceptions of a brand using two conceptual frameworks borrowed from cognitive psychology: a) sponsorship and congruence theory and b) sponsorship and the
structure of memory. Events too have their own branding and image, and yet the sponsorship literature falls short in explaining why an association transfer should be dealt with only from the event to the brand, not the other way around.

The Experiment-1 results provide insights into the psychological processes underlying the transfer of image. The association between brand and event is grounded in the ANT. A consumer’s affinity with a brand or event is an affective process. As we go about our everyday lives, our perceptions of the world around us are based on the affective stimuli attached to our activities. Data analysis of the first hypothesis, H1A, confirms that image transfer does take place from event to brand in sponsorship conditions. The attributes describing the event image were found to have been transferred to the brand image. More importantly, the same set of variables in the same conditions was subjected to between-subjects tests to ascertain whether reverse image transfer had also occurred, i.e. did the image also transfer from the brand to the event, as posited by H1B, which was also supported.

This support for H1A and H1B lays the foundation for providing empirical evidence to show that image transfer is indeed bi-directional and that reverse image transfer is a real phenomenon. Image transfer was also examined under conditions of no cue with neutral prior affect, and the only association made known between the event and brand was in the form of the sponsorship association. Although, the semantic association was not articulated, it is clear that it was learnt unconsciously, and has significant and meaningful consequences for both conventional and reverse image transfer. The implication is that not only must sponsors be cognisant of an event for it to have any influence on their branding, but event managers too must realise that
image transfer is a bi-directional process, with the image of the event also being shaped by the image of the organisation selected to sponsor the event.

Further investigation was conducted to ascertain the effect of the introduction of a cue in the direction of the dependent variable, with the results showing that image transfer still occurs in both the conventional and reverse directions. The new variable of prior affect was then introduced into the relationship, and, as expected, image transfer occurred in certain conditions of prior affect for the dependent variable but not in others. These results are elaborated upon in later sections of this chapter.

6.2 Influence of cue presence in a sponsorship context

Associations are formed in the memory nodes of the brain (Sweldens, 2011), and the resulting associations from these memory nodes are dependent upon how those associations were conceived. Whether the association came in an event or brand context, the direction of association formation determines its mental makeup and the way in which the event-brand relationship is perceived. Research in the advertising and sponsorship marketing arenas has demonstrated that consumers are highly aware of the communication context, not just the commercial message associated with the communication. Since knowledge is represented as a network of concept nodes connected by links, these associative links are strengthened each time two items co-occur. Therefore, in the case of a brand name, the more that a brand name co-occurs with a benefit, whether through an indirect or direct experience, the stronger the link between them. Likewise, the strength of the association between a brand name and an event depends on how uniquely the brand
and event are associated in the minds of consumers. Therefore, the scope of the activation and the amount of information retrieved is determined by the strength of the association between the activated node and associated nodes (Rossiter & Bellman, 2005), which is influenced by the appropriateness of the association and the presence of a cue (Aaker & Keller, 1990).

The results of Experiment-1 also demonstrate that in conventional image transfer, the role of a cue is important because it enhances the strength of the image transfer from event to brand. However, a statistically significant difference was found in the means of the three cue conditions: no cue, cue directed towards the brand and cue directed towards the event. The strength of the image transfer to the brand was substantially greater when the cue direction was towards the brand. In the case of the cue direction being towards the event in the same sponsorship scenario, the degree of image transfer was still greater than in the no cue condition, albeit not as great as when the cue was directed towards the brand itself. It is clear that cue directionality enhances memory association and increases the strength of image transfer. Thus, H2A is accepted.

When tested for the cue direction towards the event, image transfer to the brand occurs, albeit at a lesser strength, which seems to suggest that, in a sponsorship scenario, the brand and event are perceived in the aggregate, not as two separate nodes. Hence, the proper explanation lies in the associative memory structure that postulates that cues interact (ANM). The situation is similar to that of a book placed on a table. We do not see the book and table separately and then process the information on both. Rather, we process the information in the aggregate as “a book
lying on the table”. Therefore, a cue in either the conventional or reverse direction causes the image to transfer in the conventional direction.

The results for reverse image transfer are similar to those for conventional image transfer. In the case of image transfer from the brand to the event when there is neutral prior affect for the event, there was a significant difference in means between the no cue and cue towards the event condition, thus supporting H2B. However, when the cue direction was reversed to the brand, the strength of the image transfer rapidly decreased, and there was no difference in means between the conditions of no cue and cue towards the brand. Individuals are more likely to assign greater weight to a perfectly predictive cue that requires less cognitive effort and less weight to other cues that require more cognitive effort (Shah & Oppenheimer, 2006). When measuring the strength of reverse image transfer, altering the direction of the cue towards the event causes the strength of such transfer to increase. When the cue direction is changed towards the brand, in contrast, the strength of the image transfer is reduced to the same level as if the cue to the brand did not exist. In a cause-and-effect relationship, we generally have the ability to determine that cause and effect in the natural course of our everyday lives. The sponsor-event relationship is a cause-and-effect relationship, as it is ingrained in our minds in the form of an association in which the sponsor pays the sponsored organisation to be associated with it. Hence, a cue directed towards the brand in the reverse image transfer condition confounds the consumer, and he or she therefore dismisses it. In the current research, when the student participants were subjected to a test condition they did not leave their experience and knowledge outside the laboratory. As we go about our everyday lives, we continually create the world
around us in a way that we can explain and understand. Although normative models propose that decision-makers must weight cues by their objective validity, it has been shown time and again that this is a difficult undertaking (Evans, Clibbens, Cattani, Harris, & Dennis, 2003; Goodie & Crooks, 2004; Permut, 1973; Peterson & Pitz, 1985; Tversky & Kahneman, 1974). Shah and Oppenheimer (2007) demonstrate that people often weight information according to the ease with which it can be processed.

6.3 Directly formed prior affect blocks image transfer

Social psychologists have distinguished amongst cognitive, affective and conative frameworks of attitude formation wherein the cognitive dimension comprises the most systematic evaluation of an object based on opinions and beliefs. Affect, in contrast, emphasises feelings and intuitive evaluations, whilst conation is the intention toward a behaviour. When exposed to a brand supporting an event with which consumers are affectively and symbolically involved, they associate the events attributes with the sponsor and, ultimately, modify their affinity for and attitude towards the brand. Because the relationship amongst consumers, event and sponsor is fundamentally a non-verbal one, the results of this research suggest that affect constitutes the major currency in which sponsorship is transacted. Therefore, the transfer that occurs in the sponsorship context is essentially an affective one. The literature review herein showed that there are two ways of obtaining change via evaluative conditioning (Sweldens et al., 2010). One way involves repeatedly pairing a brand with the same affective stimulus, and the other involves pairing it simultaneously with different affective stimuli of the same valence. In the former case, attitudes and affect towards the brand change because a memory link is
established between the brand and the particular affective stimulus, whereas in the latter case they change because the affect elicited by the various stimuli becomes attached to the brand directly (i.e., no memory link is established between the brand and any particular affective stimulus). The two types are termed “indirect evaluative conditioning” and “direct evaluative conditioning” (Sweldens et al., 2010).

The results of the image transfer in the conventional and reverse directions demonstrate that if the prior affect for the dependent variable was formed by direct means, i.e. conditioned heterogeneously and simultaneously, no image transfer takes place even when a cue is present, i.e. it is blocked. There is no image transfer from the event to the brand or from the brand to the event. This finding is of major significance to the sponsorship literature. Experiment-3 was carried out to identify the conditions under which blocking occurred. The results of this blocking experiment demonstrate that when the affect for the dependent variable was created directly, the sponsor-event relationship becomes a redundant stimulus and is therefore blocked. Therefore, H3A and H3B are both accepted.

6.4 Role of indirectly formed prior affect

As the results of the experiments show, affect created through direct procedures are less vulnerable to changes in the valence of stimuli than that created through indirect procedures. Manipulation checks were carried out to further confirm this finding. When the affective stimuli utilised to create affect were manipulated, the brand/event associated with the affective stimuli via direct means resulted in no change in prior affect.
The result for image transfer in the condition of indirectly created prior affect was quite different from that in the directly created affect condition. Unlike the case of image transfer blocking when prior affect was formed directly, in the case of indirectly formed prior affect, the image transfer took place in both directions. This finding confirms the reasoning in the hypothesis development section that, with a direct procedure, affect becomes attached to the brand (event) directly, whereas in the case of an indirect procedure, a memory link is created between the brand (event) and the single stimulus (e.g. a celebrity endorser) paired with it. If the valence of the stimulus changes (e.g. the celebrity endorser falls from grace), the affect formed towards the brand also changes. When a brand is paired simultaneously with several different affective stimuli of the same valance, affect is attached to the brand directly without the establishment of a brand-stimuli link in the memory. However, when a brand is paired repeatedly but sequentially with the same affective stimuli, a memory link is established between the brand and the affective stimuli that mediate affective responses to the brand. D’Astous and Bitz (1995) show empirically that the consumer’s greater involvement with the sponsored organisation (event) strengthens the effect of positive sponsorship on that association. Data analysis revealed that, in conventional image transfer, the presence of indirectly formed affect does not strengthen the image transfer, and H4A is thus rejected. The literature suggests that some form of emotional attachment to a brand will enhance image transfer. In the case of reverse image transfer, the presence of indirect affect enhances the image transfer to the event. This finding supports H4B.
6.5 Image transfer is asymmetrical

Data analysis confirms that, in the case of image transfer, the existence of indirectly formed prior affect results in asymmetrical image transfer, i.e. the image transfer is stronger in the conventional than reverse direction. This finding is in line with the theory that not all associative operations are symmetrical, but should allow for separate weights on forward and backward associations (Gillund & Shiffrin, 1984; Humphreys, Bain, & Pike, 1989; Kahana, 1996; Raaijmakers & Shiffrin, 1980). Associations are inherently asymmetric, but the symmetry in pairs arises from some other process such as that in the Search for Associative Memory (SAM) model proposed by Gillund and Shiffrin (1984). The SAM model incorporates the notion of interactive cue combination that lies at the heart of memory retrieval. The direction of the memory is based on the summed activation of related memory traces and experience leading to differentiation, rather than mere strengthening. As hypothesised, the asymmetry can be attributed to the existence of pre-experimental associates in the form of bias, i.e. existing knowledge that, in a sponsorship arrangement, the brand usually pays the event for the right to be associated with it, and hence to relationship bias. Human beings have a tendency to see a cause-effect relationship as inherent in any given scenario. The brand-event relationship is one such relationship, and therefore results in asymmetrical image transfer from event to brand compared to brand to event. H5 is thus accepted.
CHAPTER 7: CONCLUSION

7.1 Theoretical implications and contributions

This thesis enhances our understanding of image transfer in the context of sponsorship. Although experiencing emotions has been acknowledged as one of the main reasons to attend or watch an event (Oatley, 1995), few studies have considered the effect of the emotive element on image transfer. This lack of attention to the emotional responses elicited by an event is surprising, given that sponsorship has been described as an indirect form of persuasion that relies fundamentally on the affective relationship that exists between the consumer and the event (Crimmins and Horn, 1996); and is known to exert an emotive rather than cognitive influence on consumer behaviour (Quester, 1996).

Meenaghan’s (1998) apt observation that the “sponsorship literature has traditionally viewed sponsorship as an activity largely similar to advertising and generally, though not always, spoken of [it] in terms of short- rather than long-term horizons” holds true today. Although sponsorship has been acknowledged as a tool that can give an organisation strategic competitive advantage, however, there are still only a handful of companies that embrace sponsorship with a view towards the long term. Accenture is a very good example. Very few organisations have managed to emulate Accenture (which engaged Tiger Woods from 2003-2006 and sponsored a number a golf tournaments) to successfully realise the long-term potential of sponsorship. This company managed to initially shift the company image to innovation, then to performance from 2003 onwards and, starting in 2006, moved it to that of a company that delivers high performance.
This thesis emphasises the role of affect in the brand-event relationship. Understanding its influence on sponsorship will allow the better integration of an organisation’s internal marketing and communication efforts. The marketing campaign that follows a sponsorship announcement plays a critical role in enhancing the value that association with an event brings. Today’s marketers have to design communication strategies that produce the best return on investment. Annual sponsorship spending worldwide has crossed the USD50 billion mark (IEG, 2013), and the challenge is to extract the best value from such an enormous amount of expenditure without over-investment. The findings presented in this thesis will help marketers to better understand the form and design of communication that must accompany sponsorship. The sort of affective stimuli that need to be used, the kind of association with the event that needs to be articulated and the way in which cues should be created are amongst the issues they need to consider. At the same time, event managers too need to spend more time and effort on their selection of sponsors. Sponsorship is not just about receiving money; it is important for event managers to understand the implications of the associations they are involving themselves in. There are many examples of sponsors influencing the image of an event. The most prominent in recent memory is the 1996 Atlanta Olympic Games, which earned the moniker the Coca-Cola Games thanks to its main sponsor, much to the detriment of the Olympic brand in many countries (Pope et al., 1997; Henseler et al., 2009). It is also necessary to appreciate the role of blocking in the sponsorship context. Otherwise, sponsorship activities can turn into costly mistakes with no substantial return on investment.
A critical variable considered in this thesis is the existence of prior affect. Our response to any given activity in our everyday lives is imbued to a great extent by the affective stimuli attached to that activity. Our affective stimuli determine how we associate the things around us. Therefore, the critical component of consumer learning is affective stimuli. The pairing of an event (brand) with an emotive event (brand) attribute is called semantic conditioning (Sweldens, 2011). Affect becomes attached to the event (brand) when the association is learnt semantically (De Houwer et al., 2010). The brain can make an unconscious yet meaningful application of an association that was unconsciously learnt (Hofman et al., 2010). The existence of affect, a crucial response at the primate, unconscious, instinctual and intuitive level of human psychology, has generally been ignored in the image transfer process even though it exerts an effect on that process. This thesis demonstrates that an absence of directly formed prior affect for the brand (event) is a necessary condition for image transfer to take place from the event to the brand or vice versa. It provides evidence to show that associative memory theory in the context of sponsorship-derived image transfer is not itself sufficient to explain that image transfer. Association alone is not enough for image transfer to occur, let alone the other variables proposed in the literature such as congruence. This research extends ANT to include the presence or absence of affect to explain the image transfer process. It makes a theoretical contribution to the sponsorship literature by redefining the image transfer process as a function of prior affect. It also provides empirical evidence of the existence of the bi-directional image transfer process and asymmetrical nature of image transfer. Blocking explains why image transfer sometimes fails to take place, and yet this important conditioning element is not
considered in the existing sponsorship literature. The inclusion of prior affect in the model enhances our understanding of the “Hows” of image transfer.

All associative theories categorise learning into two classes, cues and outcomes, on the basis of temporal order. Cues are represented as events that are experienced or observed first in the learning context and are then seen to bring about outcomes. Some authors describe learning as the covariation between two events. In our everyday lives, we use exactly the same process from very early in childhood to infer and make successful predictions and diagnoses. However, this important aspect of ANT has also been neglected in the image transfer literature. ANT allows associative weights to be assigned to multiple cues for a single outcome, which is formally equivalent to the partial regression weights in multiple regression analysis. In the context of image transfer under a sponsorship condition, our memory structure takes into account the predictive contribution of competing cues, not just the simple covariation between brand and event. This research takes refuge in Waldmann and Holyoak’s (1992) work on causal model theory and adds cues in the model to further our understanding of why image transfer actually occurs. Learners distinguish between cues that represent the causes of outcomes (i.e. predictive learning) and cues that represent the effects of outcomes (i.e. diagnostic learning), which indicates that human beings are sensitive to the directionality of the causal arrow.

This thesis provides numerous practical contributions. The empirical finding of the existence of image transfer as a bi-directional process implies that events must be cognizant of the sponsors they choose. The image of the brand influences the image
of the event. The choice of the sponsor may in fact contribute to altering their event image (planned/unplanned). Careful selection of the sponsor and what image it represents is vital in either enhancing, altering, or diminishing the event image.

Once the sponsor and event have come to an agreement on the sponsorship arrangement, the marketing campaign depicting the association needs to be carefully planned by both the sponsor and the event organisers. The role of cue direction is critical in how the consumers perceive this relationship. Appropriately directed cue will assist in the transfer of image in the relevant direction and benefit the sponsor or the event as the case may be. Press releases, advertisements in all forms of media, should carry the appropriate cue direction in order to maximise the desired effect of image transfer.

Managers must also understand the role of affect. While companies may enter into sponsorship for a number of reasons, mostly it is to create an image of their product which over time results in attracting a customer, keeping a customer and eventually increasing sales. This research shows that brand managers might keep a consumer for life if they are able to create directly formed affect for their brands. On the other hand, if the brands followers already have a directly formed affect for the brand, then sponsoring the event will not have any impact on them nor will it impact the event audience who have a directly formed affect for the event. This may mean vital resources are currently being wasted.

However, for those consumers who have indirectly formed affect for the brand or even neutral affect, such as if the brand is moving into a new target market, these
consumers can be influenced and the event image will transfer to them. This implies that under sponsorship conditions, if the strategy is to increase market share, then the focus should be to design marketing campaigns that attract new consumers rather than attempt to retain existing ones.

Brand managers also hope to entice consumers who attend the event or are ardent fans of the event by sponsoring the event. Associating themselves with the event will be money wasted if the event fans have a directly formed affect for the event. These fans will not be influenced if the brand campaign attempts transfer of image, instead the brand campaign for such event fans should be targeted to only provide a cue such that when a fan thinks of the event he/she cannot but help remember the brand too. On the other hand, for fans that don’t necessarily have direct affect for the event, the campaign should be designed to allow brand image to transfer to the event image so that the fan may associate the brand with the event. Therefore, for a brand manager, a critical question to answer would be – am I sponsoring the event to reposition the brand image, or enhance my brand image or to increase my consumer base? The marketing team will have to use the appropriate cue direction and design the sponsorship marketing campaign accordingly.

For an event campaign manager getting monetary support may be their primary objective but they too must be cognizant of the bi-directional nature of image transfer. The event image will be influenced by the sponsor’s brand. While this may not influence the ardent fan who has directly formed affect for the event, for the audience who have an indirectly formed or neutral affect for the event the ramifications can be substantial if the correct sponsor is not chosen. The image will
transfer from the brand to the event and this could be to the credit or determent for
the event image. Since the findings show that indirectly formed affect for the event
enhances image transfer to the event, this can help grow the popularity of the event
if the event organisers target audiences who are peripheral audiences. There the
association with the brand would work to their advantage. Choose sponsors who
are popular in that target market.

The marketing campaign that depicts the sponsorship association needs to be
designed appropriately depending on the kind of prior affect of the target market
and the objective of the sponsorship.

7.2 Limitations and further research

This research is not without limitations. Four are identified here. The first is the
possible lack of additional variables in the model. Because there is a serious gap in
the literature on the reverse image transfer process, the existence of unmeasured
variables and other important predictors, mediating processes and criteria that may
be acting as causal agents such as brand-event congruence, articulation of
sponsorship, live vs recorded, multiple-sponsorships, is likely. The extension of this
research over time will render it more substantive. The second limitation is the lack
of generalisability, as the participants were Hong Kong university students. The
research could be extended to other cultural settings, with comparison made
between cultures and the cultural effects on image transfer examined. Researchers
could carry out studies in a general population sample. The third limitation of this
research is that it provides a snapshot of the image transfer process, the process that
occurred over the course of a 30-minute experiment. Longitudinal studies, which
are considered essential in causal studies of individual behaviour, are needed to augment this research. It must be noted, however, that longitudinal studies have their own share of issues related to data analysis, attrition, changes in survey conditions, measurement errors and causal relationships that would need to be adequately dealt with. The final limitation is that individuals have episodic memory of the event attended in addition to semantic memory. Given that an emotional event promotes memory of both information that is central to the event and peripheral details (Heuer, & Reisberg, 1990), those attending a sponsored event in person may establish a different level of brand awareness from those watching it on television. Further research on the structure of memory is necessary to determine whether differences exist between those actually attending an event and experiencing it first-hand and those watching a recorded event on television.

This thesis opens up numerous avenues for future research. While the research validates the hypotheses in an experimental setting, further research can be conducted to validate and augment the model in a field setting. Controlling for confounding effects during a live event will be a challenge. However, similar methodology to this research may be applied in real life conditions. The key would be to identify if the prior affect for the independent variable was directly formed or indirectly formed. A suitable questionnaire can to be created to identify the type of prior affect. This may be done by designing and testing in a pilot study. The experiment itself can be conducted at a live event where the sponsor uses the sponsored event as a pretext to launch a new line/product. Support will be needed from both the event organisers and the sponsors to ensure a realistic study.
7.3 Conclusion

Sponsorship spending is now in excess of USD50 billion annually. However, the actual underlying mechanisms that occur in the minds of consumers and result in the transfer of image have been inadequately dealt with in the sponsorship literature to date. The research presented herein provides empirical evidence of the presence of a bi-directional image transfer process and brings to the fore two crucial elements: cue directionality and the presence of prior affect. These two variables extend ANT in the sponsorship context and contribute to the image transfer literature. As has been thoroughly demonstrated, the existence of directly formed prior affect will prevent the transfer of image, regardless of any sponsorship association, whilst indirectly formed prior affect will actually enhance image transfer relative to a no cue condition. This finding shows that the multi-billion-dollar expenditure on sponsorship may be misdirected if incorrect marketing communications are accompanying the sponsorship announcement. An inadequate understanding of the role of affect and cue direction causality may explain why many companies are not realising the desired return on sponsorship investment.

Finally, sponsorship differs from advertising. Advertising has the overt intention to persuade, whereas sponsorship is characterised by a more subtle, indirect form of persuasion. This difference effectively changes how marketers need to engage with their existing and prospective customer base. It is no longer sufficient to simply put a commercial message out there. Consumers are cognisant of the context of commercial messages and the direct or peripheral cues. Today’s marketers must look for ways to enhance the consumption experience of a product or service. Such an experience occurs as the result of encountering, undergoing or living through
things. Consumers look for an experience that stimulates their senses, engages them emotionally, and provides behavioural and relational values that replace functional values. Event sponsorship provides marketers with an opportunity to engage the consumer’s senses. People spend time, energy and money watching sporting events, engaging in social cause events and attending concerts. Being associated with these events constitutes an emotional experience. Any theory that fails to take into account the emotional engagement in the form of affect that the consumer experiences falls short of providing a clear and definitive explanation of why image transfer does or does not take place. The actual underlying mechanism of the image transfer process occurs in the minds of consumers. The model proposed in this thesis, which includes the constructs of prior affect, affective stimuli and cue direction causality, not only fills the knowledge gap in the sponsorship literature, but also advances our understanding of the bi-directional process and asymmetrical nature of image transfer.
REFERENCES

APPENDICES

Appendix 1: Experiment-1 - Treatment Scenarios

EXPERIMENT 1: EXPERIMENTAL CONDITIONS

<table>
<thead>
<tr>
<th>Measuring</th>
<th>Ei</th>
<th>Bi</th>
<th>Type of Affect</th>
<th>Cue absent/Present</th>
<th>Direction of cue</th>
<th>Event</th>
<th>Brand</th>
<th>affect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Image transfer on Brand</td>
<td>Popular</td>
<td>Neutral</td>
<td>Neutral</td>
<td>Absent</td>
<td>Absent</td>
<td>Football</td>
<td>WAFI</td>
</tr>
<tr>
<td>2</td>
<td>Image transfer on Brand</td>
<td>Popular</td>
<td>Neutral</td>
<td>Neutral</td>
<td>Present</td>
<td>Brand cue</td>
<td>Football</td>
<td>WAFI</td>
</tr>
<tr>
<td>3</td>
<td>Image transfer on Brand</td>
<td>Popular</td>
<td>Neutral</td>
<td>Neutral</td>
<td>Present</td>
<td>Event Cue</td>
<td>Football</td>
<td>WAFI</td>
</tr>
<tr>
<td>4</td>
<td>Image transfer on Brand</td>
<td>Popular</td>
<td>Neutral</td>
<td>Direct</td>
<td>Absent</td>
<td>Absent</td>
<td>Football</td>
<td>WAFI</td>
</tr>
<tr>
<td>5</td>
<td>Image transfer on Brand</td>
<td>Popular</td>
<td>Neutral</td>
<td>Direct</td>
<td>Present</td>
<td>Brand cue</td>
<td>Football</td>
<td>WAFI</td>
</tr>
<tr>
<td>6</td>
<td>Image transfer on Brand</td>
<td>Popular</td>
<td>Neutral</td>
<td>Direct</td>
<td>Present</td>
<td>Event Cue</td>
<td>Football</td>
<td>WAFI</td>
</tr>
<tr>
<td>RV1</td>
<td>Image transfer on Brand</td>
<td>Popular</td>
<td>Neutral</td>
<td>Direct</td>
<td></td>
<td></td>
<td></td>
<td>WAFI</td>
</tr>
<tr>
<td>7</td>
<td>Image transfer on Brand</td>
<td>Popular</td>
<td>Neutral</td>
<td>Indirect</td>
<td>Absent</td>
<td>Absent</td>
<td>Football</td>
<td>WAFI</td>
</tr>
<tr>
<td>8</td>
<td>Image transfer on Brand</td>
<td>Popular</td>
<td>Neutral</td>
<td>Indirect</td>
<td>Present</td>
<td>Brand cue</td>
<td>Football</td>
<td>WAFI</td>
</tr>
<tr>
<td>9</td>
<td>Image transfer on Brand</td>
<td>Popular</td>
<td>Neutral</td>
<td>Indirect</td>
<td>Present</td>
<td>Event Cue</td>
<td>Football</td>
<td>WAFI</td>
</tr>
<tr>
<td>RV2</td>
<td>Image transfer on Brand</td>
<td>Popular</td>
<td>Neutral</td>
<td>Indirect</td>
<td></td>
<td></td>
<td></td>
<td>WAFI</td>
</tr>
<tr>
<td>10</td>
<td>Image transfer on Event</td>
<td>Neutral</td>
<td>Popular</td>
<td>Neutral</td>
<td>Absent</td>
<td>Absent</td>
<td>IPL</td>
<td>Gucci</td>
</tr>
<tr>
<td>11</td>
<td>Image transfer on Event</td>
<td>Neutral</td>
<td>Popular</td>
<td>Neutral</td>
<td>Present</td>
<td>Brand Cue</td>
<td>IPL</td>
<td>Gucci</td>
</tr>
<tr>
<td>12</td>
<td>Image transfer on Event</td>
<td>Neutral</td>
<td>Popular</td>
<td>Neutral</td>
<td>Present</td>
<td>Event Cue</td>
<td>IPL</td>
<td>Gucci</td>
</tr>
<tr>
<td>13</td>
<td>Image transfer on Event</td>
<td>Neutral</td>
<td>Popular</td>
<td>Direct</td>
<td>Absent</td>
<td>Absent</td>
<td>IPL</td>
<td>Gucci</td>
</tr>
<tr>
<td>14</td>
<td>Image transfer on Event</td>
<td>Neutral</td>
<td>Popular</td>
<td>Direct</td>
<td>Present</td>
<td>Brand Cue</td>
<td>IPL</td>
<td>Gucci</td>
</tr>
<tr>
<td>15</td>
<td>Image transfer on Event</td>
<td>Neutral</td>
<td>Popular</td>
<td>Direct</td>
<td>Present</td>
<td>Event Cue</td>
<td>IPL</td>
<td>Gucci</td>
</tr>
<tr>
<td>RV3</td>
<td>Image transfer on Event</td>
<td>Neutral</td>
<td>Popular</td>
<td>Direct</td>
<td></td>
<td></td>
<td></td>
<td>IPL</td>
</tr>
<tr>
<td>16</td>
<td>Image transfer on Event</td>
<td>Neutral</td>
<td>Popular</td>
<td>Indirect</td>
<td>Absent</td>
<td>Absent</td>
<td>IPL</td>
<td>Gucci</td>
</tr>
<tr>
<td>17</td>
<td>Image transfer on Event</td>
<td>Neutral</td>
<td>Popular</td>
<td>Indirect</td>
<td>Present</td>
<td>Brand Cue</td>
<td>IPL</td>
<td>Gucci</td>
</tr>
<tr>
<td>18</td>
<td>Image transfer on Event</td>
<td>Neutral</td>
<td>Popular</td>
<td>Indirect</td>
<td>Present</td>
<td>Event Cue</td>
<td>IPL</td>
<td>Gucci</td>
</tr>
<tr>
<td>RV4</td>
<td>Image transfer on Event</td>
<td>Neutral</td>
<td>Popular</td>
<td>Indirect</td>
<td></td>
<td></td>
<td></td>
<td>IPL</td>
</tr>
</tbody>
</table>
Appendix 2: Experiment-1 – Experimental Group Combinations

<table>
<thead>
<tr>
<th>GROUP 17</th>
<th>1</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 18</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>GROUP 19</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>GROUP 20</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>GROUP 21</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>GROUP 22</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>GROUP 23</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>GROUP 24</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>GROUP 25</td>
<td>9</td>
<td>18</td>
</tr>
</tbody>
</table>
Appendix 3: Experiment-2 – Treatment Scenarios

EXPERIMENT 2: EXPERIMENTAL CONDITIONS

<table>
<thead>
<tr>
<th>Measuring</th>
<th>Ei</th>
<th>Bi</th>
<th>Type of Affect</th>
<th>Cue absent/Present</th>
<th>Direction of cue</th>
<th>Brand</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>19a</td>
<td>Neutral</td>
<td>Neutral</td>
<td>Indirect</td>
<td>Absent</td>
<td>Absent</td>
<td>IPL</td>
<td>WAFI</td>
</tr>
<tr>
<td>19</td>
<td>Neutral</td>
<td>Neutral</td>
<td>Indirect</td>
<td>Present</td>
<td>Brand Cue</td>
<td>IPL</td>
<td>WAFI</td>
</tr>
<tr>
<td>20</td>
<td>Neutral</td>
<td>Neutral</td>
<td>Indirect</td>
<td>Present</td>
<td>Event Cue</td>
<td>IPL</td>
<td>WAFI</td>
</tr>
<tr>
<td>21a</td>
<td>Neutral</td>
<td>Neutral</td>
<td>Indirect</td>
<td>Absent</td>
<td>Absent</td>
<td>IPL</td>
<td>WAFI</td>
</tr>
<tr>
<td>21</td>
<td>Neutral</td>
<td>Neutral</td>
<td>Indirect</td>
<td>Present</td>
<td>Brand Cue</td>
<td>IPL</td>
<td>WAFI</td>
</tr>
<tr>
<td>22</td>
<td>Neutral</td>
<td>Neutral</td>
<td>Indirect</td>
<td>Present</td>
<td>Event Cue</td>
<td>IPL</td>
<td>WAFI</td>
</tr>
</tbody>
</table>

Appendix 4: Experiment-2 – Experimental Group Combinations

EXPERIMENT 2: EXPERIMENTAL GROUPS

<table>
<thead>
<tr>
<th>GRGUP 27</th>
<th>19a</th>
<th>21a</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRGUP 28</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>GRGUP 29</td>
<td>20</td>
<td>22</td>
</tr>
</tbody>
</table>
Appendix 5: Experiment-3 – Treatment Scenarios

<table>
<thead>
<tr>
<th>Measuring</th>
<th>Ei</th>
<th>Bi</th>
<th>Type of Affect</th>
<th>Cue absent/Present</th>
<th>Direction of cue</th>
<th>Brand</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Image transfer on Brand</td>
<td>Experimental group</td>
<td>CS(A) - US</td>
<td>CS(A+B) - US</td>
<td>CS (B)</td>
<td>Hetro+ Simul</td>
<td>IPL</td>
</tr>
<tr>
<td>24</td>
<td>Image transfer on Brand</td>
<td>Control Group</td>
<td>-</td>
<td>CS(A+B) - US</td>
<td>CS (B)</td>
<td>Hetro+ Simul</td>
<td>IPL</td>
</tr>
<tr>
<td>25</td>
<td>Image transfer on Brand</td>
<td>Experimental group</td>
<td>CS(A) - US</td>
<td>CS(A+B) - US</td>
<td>CS (B)</td>
<td>Hetro+ Seq</td>
<td>IPL</td>
</tr>
<tr>
<td>26</td>
<td>Image transfer on Brand</td>
<td>Control Group</td>
<td>-</td>
<td>CS(A+B) - US</td>
<td>CS (B)</td>
<td>Hetro+ Seq</td>
<td>IPL</td>
</tr>
<tr>
<td>27</td>
<td>Image transfer on Brand</td>
<td>Experimental group</td>
<td>CS(A) - US</td>
<td>CS(A+B) - US</td>
<td>CS (B)</td>
<td>Homo+ Simul</td>
<td>IPL</td>
</tr>
<tr>
<td>28</td>
<td>Image transfer on Brand</td>
<td>Control Group</td>
<td>-</td>
<td>CS(A+B) - US</td>
<td>CS (B)</td>
<td>Homo+ Simul</td>
<td>IPL</td>
</tr>
<tr>
<td>29</td>
<td>Image transfer on Brand</td>
<td>Experimental group</td>
<td>CS(A) - US</td>
<td>CS(A+B) - US</td>
<td>CS (B)</td>
<td>Homo+ Seq</td>
<td>IPL</td>
</tr>
<tr>
<td>30</td>
<td>Image transfer on Brand</td>
<td>Control Group</td>
<td>-</td>
<td>CS(A+B) - US</td>
<td>CS (B)</td>
<td>Homo+ Seq</td>
<td>IPL</td>
</tr>
<tr>
<td>31</td>
<td>Image transfer on Event</td>
<td>Experimental group</td>
<td>CS(A) - US</td>
<td>CS(A+B) - US</td>
<td>CS (B)</td>
<td>Hetro+ Simul</td>
<td>IPL</td>
</tr>
<tr>
<td>32</td>
<td>Image transfer on Event</td>
<td>Control Group</td>
<td>-</td>
<td>CS(A+B) - US</td>
<td>CS (B)</td>
<td>Hetro+ Simul</td>
<td>IPL</td>
</tr>
<tr>
<td>33</td>
<td>Image transfer on Event</td>
<td>Experimental group</td>
<td>CS(A) - US</td>
<td>CS(A+B) - US</td>
<td>CS (B)</td>
<td>Hetro+ Simul</td>
<td>IPL</td>
</tr>
<tr>
<td>34</td>
<td>Image transfer on Event</td>
<td>Control Group</td>
<td>-</td>
<td>CS(A+B) - US</td>
<td>CS (B)</td>
<td>Hetro+ Simul</td>
<td>IPL</td>
</tr>
<tr>
<td>35</td>
<td>Image transfer on Event</td>
<td>Experimental group</td>
<td>CS(A) - US</td>
<td>CS(A+B) - US</td>
<td>CS (B)</td>
<td>Homo+ Simul</td>
<td>IPL</td>
</tr>
<tr>
<td>36</td>
<td>Image transfer on Event</td>
<td>Control Group</td>
<td>-</td>
<td>CS(A+B) - US</td>
<td>CS (B)</td>
<td>Homo+ Simul</td>
<td>IPL</td>
</tr>
<tr>
<td>37</td>
<td>Image transfer on Event</td>
<td>Experimental group</td>
<td>CS(A) - US</td>
<td>CS(A+B) - US</td>
<td>CS (B)</td>
<td>Homo+ Seq</td>
<td>IPL</td>
</tr>
<tr>
<td>38</td>
<td>Image transfer on Event</td>
<td>Control Group</td>
<td>-</td>
<td>CS(A+B) - US</td>
<td>CS (B)</td>
<td>Homo+ Seq</td>
<td>IPL</td>
</tr>
<tr>
<td>M1</td>
<td>Cue Manipulation Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FWC</td>
<td>WAFI</td>
</tr>
<tr>
<td>M2</td>
<td>Cue Manipulation Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FWC</td>
<td>WAFI</td>
</tr>
<tr>
<td>M3</td>
<td>Cue Manipulation Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IPL</td>
<td>GUCCI</td>
</tr>
<tr>
<td>M4</td>
<td>Cue Manipulation Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IPL</td>
<td>GUCCI</td>
</tr>
<tr>
<td>M5</td>
<td>Cue Manipulation Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IPL</td>
<td>WAFI</td>
</tr>
<tr>
<td>M6</td>
<td>Cue Manipulation Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IPL</td>
<td>WAFI</td>
</tr>
<tr>
<td>A5</td>
<td>Affective stimuli manipulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BS</td>
<td>ES</td>
</tr>
</tbody>
</table>
Appendix 6: Experiment-3 – Treatment Groups

<table>
<thead>
<tr>
<th>GROUP</th>
<th>25</th>
<th>M5</th>
<th></th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 2</td>
<td>26</td>
<td>M1</td>
<td>M3</td>
<td>AS</td>
</tr>
<tr>
<td>GROUP 3</td>
<td>29</td>
<td>M6</td>
<td></td>
<td>AS</td>
</tr>
<tr>
<td>GROUP 4</td>
<td>30</td>
<td>M2</td>
<td>M4</td>
<td>AS</td>
</tr>
<tr>
<td>GROUP 5</td>
<td>33</td>
<td>M5</td>
<td></td>
<td>AS</td>
</tr>
<tr>
<td>GROUP 6</td>
<td>34</td>
<td>M1</td>
<td>M3</td>
<td>AS</td>
</tr>
<tr>
<td>GROUP 7</td>
<td>37</td>
<td>M6</td>
<td></td>
<td>AS</td>
</tr>
<tr>
<td>GROUP 8</td>
<td>38</td>
<td>M2</td>
<td>M4</td>
<td>AS</td>
</tr>
<tr>
<td>GROUP 9</td>
<td>23</td>
<td>M1</td>
<td>M3</td>
<td>M5</td>
</tr>
<tr>
<td>GROUP 10</td>
<td>24</td>
<td>M1</td>
<td>M3</td>
<td>M5</td>
</tr>
<tr>
<td>GROUP 11</td>
<td>27</td>
<td>M2</td>
<td>M4</td>
<td>M6</td>
</tr>
<tr>
<td>GROUP 12</td>
<td>28</td>
<td>M2</td>
<td>M4</td>
<td>M6</td>
</tr>
<tr>
<td>GROUP 13</td>
<td>31</td>
<td>M1</td>
<td>M3</td>
<td>M5</td>
</tr>
<tr>
<td>GROUP 14</td>
<td>32</td>
<td>M1</td>
<td>M3</td>
<td>M5</td>
</tr>
<tr>
<td>GROUP 15</td>
<td>35</td>
<td>M2</td>
<td>M4</td>
<td>M6</td>
</tr>
<tr>
<td>GROUP 16</td>
<td>36</td>
<td>M2</td>
<td>M4</td>
<td>M6</td>
</tr>
</tbody>
</table>
Appendix 7: Scale Items of 3 Popular Brands

Please indicate how familiar you are with the CHRISTIAN DIOR brand name.

<table>
<thead>
<tr>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not at all familiar</td>
</tr>
<tr>
<td>Definitely do not recognise</td>
</tr>
<tr>
<td>Definitely have not heard of it before</td>
</tr>
</tbody>
</table>

Please indicate how familiar you are with the GUCCI brand name.

<table>
<thead>
<tr>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not at all familiar</td>
</tr>
<tr>
<td>Definitely do not recognise</td>
</tr>
<tr>
<td>Definitely have not heard of it before</td>
</tr>
</tbody>
</table>

Please indicate how familiar you are with the CARLSBERG BEER brand name.

<table>
<thead>
<tr>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not at all familiar</td>
</tr>
<tr>
<td>Definitely do not recognise</td>
</tr>
<tr>
<td>Definitely have not heard of it before</td>
</tr>
</tbody>
</table>
Appendix 8: Scale Items of 3 Popular Events

Please indicate how familiar you are with the F1 SINGAPORE GRANDPRIX event.
 Not at all familiar ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ Extremly familiar
 Definitely do not recognise ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ Definitely recognise
 Definitely have not heard of it before ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ Definitely have heard of it before

Please indicate how familiar you are with the HONG KONG RUGBY SEVENS event.
 Not at all familiar ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ Extremely familiar
 Definitely do not recognise ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ Definitely recognise
 Definitely have not heard of it before ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ Definitely have heard of it before

Please indicate how familiar you are with the FOOTBALL WORLD CUP event.
 Not at all familiar ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ Extremely familiar
 Definitely do not recognise ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ Definitely recognise
 Definitely have not heard of it before ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ Definitely have heard of it before
Appendix 9: List of Fictitious Brands, Events and Affective Stimuli Numbers

Fictitious Brands:
1. Riva
2. Axiom
3. Geant
4. Wafi
5. Skylark

Fictitious Events:
1. V-Festival
2. IPL T-20 Challenge
3. Barsha Track and Field Championship
4. Jumeirah Tournament
5. Jaypee Champions League

Images in Pretest for event:
Affective stimuli for conditioning fictitious event – IAPS numbers: 4535, 8060, 8130, 5623, 8469, 4533.
Appendix 10: Scale of Attributes for Affective Stimuli for Event

Please rate the image below on a 7-point scale in terms of the adjectives that best describe it.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Somewhat Agree</th>
<th>Neither</th>
<th>Somewhat Disagree</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adventurous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggressive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affluent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appealing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entertaining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exciting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glamorous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masculine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passionate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prestigious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stimulating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stylish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Successful</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rugged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tough</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrilling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 11: Scale of Attributes for Affective Stimuli for Brand

Please rate the image below on a 7-point scale in terms of the adjectives that best describe it.

<table>
<thead>
<tr>
<th>Adventurous</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Somewhat Disagree</th>
<th>Neither Agree nor Disagree</th>
<th>Somewhat Agree</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affluent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appealing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elegant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exciting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extroverted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feminine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glamorous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passionate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleasing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prestigious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reputable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sophisticated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stimulating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stylish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Successful</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tough</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trendy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 12: Scale Items for Affective Stimuli and Affective Stimuli Re-evaluation

Please indicate on the scale below your response to the picture/person above.

I find it unpleasant I find it pleasant
I dislike it very much I like it very much
It left me with a bad feeling It left me with a good feeling

You just looked at pictures of people you’ve never met. Looks can deceive, particularly when people have been accused of a serious crime. Therefore, we will show you the same people again, but this time with their criminal records (if applicable).

PLEASE READ THE FOLLOWING NEW INFORMATION...

A) The fashion model depicted above was convicted of causing the death of a child through dangerous driving when under the influence of drugs and alcohol. She has also been charged with the criminal possession of drugs with intent to supply others.

After viewing the picture/person above and reading the new information, please indicate on the following scale your response to that picture/person.

I find it unpleasant I find it pleasant
I dislike it very much I like it very much
It left me with a bad feeling It left me with a good feeling

B) The boxing champion shown above was convicted of two counts of child kidnapping, engaging in corrupt acts and also allegedly murdering his girlfriend in Venezuela.

After viewing the picture/person above and reading the new information, please indicate on the following scale your response to that picture/person.

I find it unpleasant I find it pleasant
I dislike it very much I like it very much
It left me with a bad feeling It left me with a good feeling
Appendix 13: Cue Direction Manipulation Check

A) Today GUCCI, the biggest-selling Italian fashion and pure leather goods brand, announced that it had won the bid to sponsor IPL T-20 CHALLENGE in Brazil. IPL T-20 CHALLENGE is a leading international sporting event featuring summer and winter sports competitions in which thousands of athletes participate. The event is the world’s most widely broadcast and televised event, with several billion viewers.

GUCCI explained that its sponsorship of IPL T-20 CHALLENGE in 2014 is ideal, as it will strengthen the brand’s image with the reach and popularity that sponsoring such a global event brings. It will also provide a platform for GUCCI to launch its new line of sport and gym fashion wear targeted at sport-and fitness-conscious consumers.

After reading the paragraph above, please answer the following.

It makes me think more about GUCCI
It is directed towards GUCCI
My image of GUCCI is strengthened

It makes me think more about IPL T-20
It is directed towards IPL T-20
My image of IPL T-20 is strengthened

B) Today the IPL T-20 CHALLENGE governing council announced that the official sponsor of the 2014 games will be GUCCI, the Italian fashion and pure leather goods brand. GUCCI is amongst the top-50 global brands. It is one of the most popular brands amongst high-income consumers who have a taste for style and quality.

The IPL T-20 CHALLENGE spokesperson explained that the sponsorship deal with GUCCI is ideal, as it enhances the image of the tournament, and a number of GUCCI fashion models and celebrities who endorse GUCCI will hold concerts and shows during the tournament to entertain the crowds and bring a festive atmosphere to the games.

After reading the paragraph above, please answer the following.

It makes me think more about GUCCI
It is directed towards GUCCI
My image of GUCCI is strengthened

It makes me think more about IPL T-20
It is directed towards IPL T-20
My image of IPL T-20 is strengthened
C) Today Wafi, a French luxury fashion brand and part of LVMH, the world’s largest luxury group, announced that it had won the bid to sponsor Football World Cup 2014 hosted by Brazil. The Football World Cup is an international association football competition featuring 32 national teams competing over a month. The event is the most widely broadcast and televised event in the world, with several billion viewers.

Wafi explained that its sponsorship of the Football World Cup in 2014 is ideal, as it will strengthen the brand’s image with the reach and popularity that sponsoring the Football World Cup brings.

After reading the paragraph above, please answer the following.

It makes me think more about WAFI
It is directed towards WAFI
My image of WAFI is strengthened

It makes me think more about FOOTBALL WORLD CUP
It is directed towards FOOTBALL WORLD CUP
My image of FOOTBALL WORLD CUP is strengthened

D) The Football World Cup governing council today announced that the official sponsor of the 2014 games will be WAFI, the French luxury fashion brand. WAFI is part of LVMH, the world’s largest luxury group. It designs and retails ready-to-wear leather goods, fashion accessories, footwear, jewellery, fragrance, make-up and skincare products.

The Football World Cup spokesperson explained that the sponsorship deal with WAFI is ideal, as it enhances the image of the tournament, and a number of WAFI fashion models and celebrities will hold concerts and shows before and after the matches to entertain the crowds and ensure sell-out stadiums.

After reading the paragraph above, please answer the following.

It makes me think more about WAFI
It is directed towards WAFI
My image of WAFI is strengthened

It makes me think more about FOOTBALL WORLD CUP
It is directed towards FOOTBALL WORLD CUP
My image of FOOTBALL WORLD CUP is strengthened
E) Today the IPL T-20 CHALLENGE governing council announced that the official sponsor of the 2014 games will be WAFI, the French luxury fashion brand. WAFI is part of LVMH, the world’s largest luxury group. It designs and retails ready-to-wear leather goods, fashion accessories, footwear, jewellery, fragrance, make-up and skincare products.

The IPL T-20 CHALLENGE spokesperson explained that the sponsorship deal with WAFI is ideal, as it enhances the image of the tournament, and a number of WAFI fashion models and celebrities who endorse WAFI will hold concerts and shows during the tournament to entertain the crowds and bring a festive atmosphere to IPL T-20 CHALLENGE.

After reading the paragraph above, please answer the following.

It makes me think more about WAFI.
It makes me think more about IPL T-20.
It is directed towards WAFI.
It is directed towards IPL T-20.
My image of WAFI is strengthened.
My image of IPL T-20 is strengthened.

F) WAFI, a French luxury fashion brand and part of LVMH, the world’s largest luxury group, today announced that it has won the bid to sponsor IPL T-20 CHALLENGE in Brazil. IPL T-20 CHALLENGE is a leading international sporting event featuring summer and winter sports competitions in which thousands of athletes participate. The event is the most widely broadcast and televised event, with several billion viewers.

WAFI explained that its sponsorship of IPL T-20 CHALLENGE in 2014 is ideal, as it will strengthen the brand’s image with the reach and popularity that sponsoring such a global event brings. It will also provide a platform for WAFI to launch its new line of sport and gym fashion wear targeted at sport- and fitness-conscious consumers.

After reading the paragraph above, please answer the following.

It makes me think more about WAFI.
It makes me think more about IPL T-20.
It is directed towards WAFI.
It is directed towards IPL T-20.
My image of WAFI is strengthened.
My image of IPL T-20 is strengthened.
Appendix 14: Wafi Brand Name – Univariate Test on Demographics

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>18.87</td>
<td>7</td>
<td>2.70</td>
<td>1.89</td>
<td>0.11</td>
<td>0.32</td>
</tr>
<tr>
<td>Intercept</td>
<td>191.09</td>
<td>1</td>
<td>191.09</td>
<td>133.58</td>
<td>0.00</td>
<td>0.83</td>
</tr>
<tr>
<td>Sex</td>
<td>0.01</td>
<td>1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.94</td>
<td>0.00</td>
</tr>
<tr>
<td>Age</td>
<td>3.45</td>
<td>1</td>
<td>3.45</td>
<td>2.41</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>Nationality</td>
<td>0.15</td>
<td>2</td>
<td>0.08</td>
<td>0.05</td>
<td>0.95</td>
<td>0.00</td>
</tr>
<tr>
<td>Sex * Age</td>
<td>0.46</td>
<td>1</td>
<td>0.46</td>
<td>0.32</td>
<td>0.57</td>
<td>0.01</td>
</tr>
<tr>
<td>Sex * Nationality</td>
<td>5.01</td>
<td>1</td>
<td>5.01</td>
<td>3.51</td>
<td>0.07</td>
<td>0.11</td>
</tr>
<tr>
<td>Age * Nationality</td>
<td>0.03</td>
<td>1</td>
<td>0.03</td>
<td>0.02</td>
<td>0.90</td>
<td>0.00</td>
</tr>
<tr>
<td>Sex * Age * Nationality</td>
<td>0.00</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.00</td>
</tr>
<tr>
<td>Error</td>
<td>40.05</td>
<td>28</td>
<td>1.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>420.88</td>
<td>36</td>
<td>1.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>58.93</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 15: IPL T-20 Event Name – Univariate Test on Demographics

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>16.11</td>
<td>9</td>
<td>1.79</td>
<td>2.11</td>
<td>0.07</td>
<td>0.41</td>
</tr>
<tr>
<td>Intercept</td>
<td>158.60</td>
<td>1</td>
<td>158.60</td>
<td>186.95</td>
<td>0.00</td>
<td>0.87</td>
</tr>
<tr>
<td>Sex</td>
<td>1.95</td>
<td>1</td>
<td>1.95</td>
<td>2.29</td>
<td>0.14</td>
<td>0.08</td>
</tr>
<tr>
<td>Age</td>
<td>1.92</td>
<td>2</td>
<td>0.96</td>
<td>1.13</td>
<td>0.34</td>
<td>0.08</td>
</tr>
<tr>
<td>Nationality</td>
<td>2.74</td>
<td>2</td>
<td>1.37</td>
<td>1.61</td>
<td>0.22</td>
<td>0.11</td>
</tr>
<tr>
<td>Sex * Age</td>
<td>0.88</td>
<td>1</td>
<td>0.88</td>
<td>1.04</td>
<td>0.32</td>
<td>0.04</td>
</tr>
<tr>
<td>Sex * Nationality</td>
<td>0.60</td>
<td>1</td>
<td>0.60</td>
<td>0.71</td>
<td>0.41</td>
<td>0.03</td>
</tr>
<tr>
<td>Age * Nationality</td>
<td>0.69</td>
<td>1</td>
<td>0.69</td>
<td>0.81</td>
<td>0.38</td>
<td>0.03</td>
</tr>
<tr>
<td>Sex * Age * Nationality</td>
<td>2.36</td>
<td>1</td>
<td>2.36</td>
<td>2.79</td>
<td>0.11</td>
<td>0.09</td>
</tr>
<tr>
<td>Error</td>
<td>22.90</td>
<td>27</td>
<td>0.848</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>573.67</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>39.01</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CURRICULUM VITAE

A unique combination of teaching, marketing and operation management skills in the private and education sectors further augmented by an MBA, graduate degree in Business Management and General Teaching Council of England qualification.

Academic Qualifications
1. PhD – Department of Marketing, Hong Kong Baptist University 2011-2014
2. MBA from Hong Kong Baptist University (2009-2010) with GPA: 3.93
3. Qualified Teacher Status with merit from the General Teaching Council of England and Wales (2008)

List of publications, working papers, conference presentations:
Awards / Achievements (in recent years)

1) Best Business Management Student award from the University of Essex.
2) Distinction and Merit award at the Undergraduate level.
3) HSBC award for the best overall Management student.
4) Awarded the MBA Distinction Award and Recipient of the Scholastic Award for the best student in the MBA.
5) Beta-Gamma-Sigma HKBU Chapter scholarship award for academic and overall achievements.

Teaching and Work Experience

Teaching Assistant – Part time Sept 2011 to Mar 2014
Hong Kong Baptist University, Department of Marketing
While doing my PhD, I also assisted in teaching various modules/courses at the university.

1- MKT 3310- Marketing Communications and Social Media to BBA students
2- MKT 7040- Management of Marketing Communications and Social Media (Advanced Elective) to MBA, MSc students

Business Studies and Economics Teacher (NQT) March 2008 to Sept 2009
Moulsham High School and Humanities College, Chelmsford
Taught Business Studies, Economics and Leisure and Tourism to Sixth form College pupils.

Business Studies Teacher (GTP) Sept 2007 to March 2008
Chelmer Valley High School and Engineering College, Chelmsford
Plan, Prepare, deliver and mark class work and homework for Business studies and Maths in liaison with the school based mentor. To deliver lessons in accordance with specification of the exam board. To maintain an accurate and up to date records and
assessment of work. To take part in external visits and trips associated with business studies.

Teaching Assistant

Hylands School, Chelmsford

Oct 2006 to Aug 2007

A very challenging and satisfying role of supporting students in school while gaining experience in interacting with students in United Kingdom.

Marketing Manager

(Fashion house), Hong Kong/ Delhi

Jan 2003 to Sept 2003

A client-facing role that has led me to spearhead the business activities of this start-up garment export house. It included liaising with, Manufacturers, Fashion designers in India and China, scouting for the best supplier and create a marketing mix for the products in India and overseas, especially in Hong Kong. The company’s customer base grew by 35%, the Supplier base by 40% helping building-in redundancy and lowering operating expenses, total revenue increased by 105%.

Career objective

I have a strong desire to become an academic as I enjoy myself the most when I am surrounded by a group of students who are eager to gain knowledge and challenge the given. In my classes I work very hard to promote an atmosphere that promotes inclusive learning. I have a keen desire to continue my research and contribute to academia. As someone who has had practical experience in the business environment as well as academia, I can appreciate the fact that “Theory leads to practice and practice provides a feedback loop to theory”. The two are interdependent and thus help innovate and progress.