
2005). The forward primer was used with GC clamps during PCR-DGGE 

experiments. 

Next, 100 ng of DNA was used as the template in a 50 μL PCR mixture 

containing 1X PCR buffer, 200 µM of each dNTP, 0.4 µM of each primer, and 

1.25 units of Taq DNA polymerase (Promega, USA). The PCR mixture was 

amplified using a thermal cycler (DNA Engine Gradient, Bio-Rad, USA) with the 

following programmed conditions: initial denaturation at 94°C for 10 min, 

followed by 35 cycles of denaturation at 94°C for 30 s, annealing at 55°C for 30 s, 

and extension at 72°C for 1 min; the final extension was at 72°C for 10 min, and 

ended at 4°C. 

DGGE was carried out using a D-code system (Bio-Rad Laboratories, Inc., 

California, USA) under the following conditions: 50 µL of the PCR product was 

loaded onto 7% (w/v) acrylamide gel containing a 30-70% denaturant gradient; 

electrophoresis was run at 75V for 16 h in 1X TAE buffer at 60°C. Following 

electrophoresis, the gel was stained with SYBRTM Green Gold for 60 min in a 

staining tray, and finally scanned under UV transillumination. The gel image was 

captured using a Bio-Rad gel documentation system (ChemiDoc XRS, USA) and 

analyzed using the Bio-Rad image program (Quantity One 4.5.0) for qualitative 

analysis. 

Dominant bands from DGGE were excised from the gel and purified for 

further cloning and sequencing as described in section 3.3.2 (Chapter 3). Closely 

related sequences were searched and compared in the GenBank at the National 

Center for Biotechnology Information Database with BLASTn tools. 

(http://www.ncbi.nlm.nih.gov/BLAST) 

8.3. Results and Discussion 

143 
 







 

Photo 9.1. Growth status of Chinese cabbages after 7 weeks with struvite and 

normal compost amendments. (C = control soil without any amendment, F = 

control soil with inorganic fertilizer, S2.5 = soil amended with 2.5% struvite 

compost, S5 = soil amended with 5% struvite compost S10 = soil amended with 

10% struvite compost, L2.5 = soil amended with 2.5% normal food waste 

compost, L5 = soil amended with 5% normal food waste compost, L10 = soil 

amended with 10% normal food waste compost). 

 

9.3.2.3. Soil properties changes during Cherry tomato harvest 

Unlike Chinese cabbages, Cherry tomatos have a relatively longer growth 

L2.5 L5 L10 F C 

C S10 S5 S2.5 F 
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period and higher biomass yield that required more nutrients. The soluble active 

components in composts are the main contributors of soil salinity and varied for 

different treatments, which resulted in different biomass yields. The EC values of 

the soil rhizosphere water were significantly decreased in all treatments at the end 

of pot trials (as shown in Figure 9.5a) and correlated with available nitrogen 

contents (Figure 9.5b and 9.5c). 

The lowest available ammonium content was measured in the control 

treatment since barren soil was used. There were no differences in available 

ammonium content measured at harvest for all treatments, although the initial 

concentrations were diverse. According to results from our previous study, both 

nitrification and plant nutrient uptake rates decrease the available ammonium 

content from the system and signified rate differences between the treatments. 

However, the results suggested that cherry tomato demanded more nitrogen than 

the leaf vegetable Chinese cabbage and the available nitrogen supply might be not 

sufficient for better growth. Therefore the optimum application rate should differ 

from pot trials with Chinese cabbage. 

Differing from nitrogen, concentrations of available P in different treatments 

after harvest varied (as shown in Figure 9.5d), which were regulated mainly by 

organic P mineralization, struvite P release, and P uptake by the plants. Available 

P in the treatments amended with struvite compost theoretically increased, since 

there was significantly higher P during the soil incubation study. In contrast, it 

was slightly decreased in treatments S2.5 and S5, possibly due to higher plant 

uptake (Table 9.4). Gao et al. (2014) summarized the nutrient absorption 

characteristics of tomato and found that the N/P uptake ratio is approximately 5:1. 

This indicates that the available P concentrations were sufficient and did not 
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decrease as fast as available N. However, the N availability restricted P absorption. 

Hernández et al. (2014) reported that that the compost application ratio 50 t/h, 

which is similar to treatment S5, did not supply enough nitrogen to meet the 

requirements for tomato growth. Slow mineralization of organic nitrogen from 

compost was found to be the reason for restricted yields. Therefore, a high 

application rate of compost or inorganic fertilizer is needed to meet with the 

nutrient requirements for plant growth. To meet the required nutrient input, 

struvite compost with a high nutrient content could reduce the application rate, 

compared to normal compost, and alleviate the risk of contributing to high salinity, 

which was hazardous for plant growth. 

 

 

Figure 9.5. Changes in electrical conductivity (a), available ammonium (b), nitrate 

(c) and available phosphorus (d) during initial and final days of Cherry tomato pot 

trials with compost amendments. (C = control soil without any amendment, F = 
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control soil with inorganic fertilizer, S2.5 = soil amended with 2.5% struvite 

compost, S5 = soil amended with 5% struvite compost S10 = soil amended with 

10% struvite compost, L2.5 = soil amended with 2.5% normal food waste 

compost, L5 = soil amended with 5% normal food waste compost, L10 = soil 

amended with 10% normal food waste compost). 

 

9.3.2.4. Cherry tomato plant development with compost amendments 

After 10 weeks of pot cultivation both the shoot and root biomasses of 

Cherry tomato were calculated (Table 9.4). Tomato shoot biomasses from 

different application rates improved with struvite compost amendment, i.e. S2.5, 

S5 and S10, compared to normal compost treatments. The biomasses of shoots 

from treatments S2.5-10 ranged from 5.15-8.72 g/plant and were higher than the 

1.27-4.39 g/plant from treatments L2.5-10. Treatment S5 hadthe highest shoot 

biomass (8.72 g/plant), followed by treatment S2.5 (which had a comparable 

shoot system with treatment S5). Numerous studies have addressed the use of 

compost to improve soil physical properties and achieve better root systems 

(Herrera et al., 2008). This advantage was envisaged with the cultivation of 

Cherry tomato, but not with Chinese cabbage, due to different types of root 

systems. Root growth and insufficient nutrient supply restricted the biomass yield 

from treatment F, which contradicting the results from the Chinese cabbage pot 

trials. In the meantime, the high salinity of compost substrate significantly 

affected the root development, as obviously demonstrated in treatment L10. The 

control treatment had the lowest accumulated nitrogen content in the biomass due 

to the barren substrate. However, there were no significant differences in P 

concentration for tomato plants because of the relatively sufficient P supply in this 
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experiment. Therefore, we conclude that nutrient uptake is seriously dependent on 

the biomass. 

Table 9.4. Total biomass yield of cherry tomato and nutrient uptake rates during 

pot trials with compost amendment 

Treatments 

Shoot 

weight 

(g/plant 

dw) 

Root weight 

(g/plant dw) 
N (g/kg) P (g/kg) 

N uptake 

(mg/plant) 

P uptake 

(mg/plant) 

C 1.72±0.10e 0.63±0.11d 7.99±1.06c 4.84±0.12ab 18.7±1.93e 11.4±0.62ef 

F 4.98±0.45c 1.05±0.17bc 12.37±0.58a 4.63±0.42ab 74.7±10.34b 27.9±4.11c 

S2.5 7.26±0.61b 2.04±0.21a 10.65±1.15ab 4.30±0.10b 98.9±10.17a 39.9±2.49b 

S5 8.72±0.36a 1.92±0.09a 11.15±0.93ab 5.61±0.39a 118.8±13.19a 59.7±5.85a 

S10 5.15±0.37c 1.34±0.03b 11.22±0.48ab 4.75±0.34ab 72.8±5.16bc 30.9±3.91c 

L2.5 2.49±0.27d 0.68±0.02cd 10.72±0.77ab 4.46±0.59b 33.8±2.64d 14.0±0.63e 

L5 4.39±0.93c 1.07±0.22bc 9.51±0.40bc 4.15±0.26b 51.8±9.48cd 22.6±3.79cd 

L10 1.27±0.17e 0.53±0.08d 9.99±0.27bc 4.28±0.21b 18.0±2.25e 7.68±0.69f 

The mean and standard deviation are shown. Values followed by the same letter 

are not significantly different (p <0.05). (C = control soil without any amendment, 

F = control soil with inorganic fertilizer, S2.5 = soil amended with 2.5% struvite 

compost, S5 = soil amended with 5% struvite compost S10 = soil amended with 

10% struvite compost, L2.5 = soil amended with 2.5% normal food waste 

compost, L5 = soil amended with 5% normal food waste compost, L10 = soil 

amended with 10% normal food waste compost). 
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Photo 9.2. Growth status of Cherry tomato after 10 weeks with different struvite 

compost amendment. (C = control soil without any amendment, F = control soil 

with inorganic fertilizer, S2.5 = soil amended with 2.5% struvite compost, S5 = 

soil amended with 5% struvite compost S10 = soil amended with 10% struvite 

compost, L2.5 = soil amended with 2.5% normal food waste compost, L5 = soil 

amended with 5% normal food waste compost, L10 = soil amended with 10% 

normal food waste compost). 

 

 

 

C S10 S5 S2.5 F 

L2.5 L5 L10 F C 
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9.4. Conclusions 

The following conclusions can be made from this experiment: 

i. The pH of acid soil could be effectively increased by both normal food 

waste compost and struvite compost amendments.  

ii. A neutral pH and fresh organic matter input stimulated the activity of soil 

bacteria resulting in improved carbon mineralization, which is closely related to N 

and P release rate in compost amended soil.  

iii. Struvite compost amended soil released more nutrients, compared to 

normal compost, that resulted in more nutrients for plant growth. Nitrogen release 

rate increased with increasing compost/soil ratio, but P releasing was not 

significantly affected. 

iv. Compost salinity significantly affected plant growth, especially for roots, 

which are sensitive. High compost application rate (10%) of lime and struvite 

compost negatively affected the plant growth due to their high salinities.  

v. Both shoot and root biomasses were significantly improved with struvite 

compost amendment compared to lime added food waste compost. 

vi. The optimum application dosage of 5% struvite compost is recommended, 

since that would supply more nutrients for plant growth and reduce the application 

rate, alleviating the negative effect of high compost rate on plants.  

 

190 
 



CHAPTER TEN 

SUMMARY CONCLUSIONS AND FUTURE RESEARCH 

RECOMMENDATIONS 

10.1. Introduction 

In last few decades, the food outlets and food processing industries have 

massively increased and become a major contributor (25-70%) of municipal solid 

waste (Pham et al., 2015). Sustainable management and recycling approaches to 

food waste are a pre-requisite for reducing environmental burdens and alleviating 

the pressure on existing landfill facilities in Hong Kong. Composting is a mature 

and long-standing waste treatment technology, which combines the benefit of 

efficient organic carbon and nutrient (e.g. N) recycling with the reduction of food 

waste being landfilled (Wong et al., 2009). 

However, a major problem with food waste composting is that the quick 

decomposition of organic materials into organic fatty acids leading to acidification 

of the composting mass, odour emissions (due to loss of volatile fatty compounds), 

and poor bioconversion rates (Nakasaki et al.,1998; Sundberg et al., 2013). 

Adjusting the pH of the composting mass by external addition of alkaline 

materials, such as lime and coal fly ash, is the most common approach (Bergersen 

et al., 2009; Wong et al., 2009). However, nitrogen loss as NH3 is promoted under 

alkaline condition and leads to the requirement of improved composting 
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technology to restore the essential plant nutrients in food waste. 

Struvite composting is an innovative approach for food wastes recycling. 

Struvite (empirical formula MgNH4PO4·6H2O) is a precipitation of phosphate: 

ammonium: magnesium at 1:1:1molar ratio and is widely used for nutrient (N and 

P) recovery from industrial/domestic wastewater (Ganrot et al., 2007; Claudio et 

al., 2010). Jeong and Kim (2001) have successfully tested struvite precipitation 

during composting process by adding Mg and P salts that reduced ammonia 

emissions and improved the fertilizer value of the compost. In addition, struvite 

precipitation is enhanced under the alkaline pH, specifically between 7 and 11 

(Burns and Moody, 2002), and has an optimum pH of 7-9 (Doyle and Parsons, 

2002) since it is readily soluble in acidic conditions. Therefore, the low pH in the 

initial stages of food waste composting may negatively influence struvite 

formation, if the pH of the composting mass is not maintained under neutral or 

alkaline condition. 

Considering the composition of food waste, an excess amount of Mg and P 

are essential for struvite precipitation. During swine manure composting, the 

organic matter decomposition was inhibited with external addition for struvite 

precipitation of MgCl2 and KH2PO4 at a molar ratio > 0.05M of initial nitrogen 

(Lee et al., 2009). Meanwhile, the molar ratio of 1:2 for Mg and PO4 is 

recommended for struvite formation in pig manure composting (Ren et al., 2010). 

These reports indicated that the concentrations of Mg and P salts are crucial and 

that requirements may vary for food waste struvite composting. In addition, food 
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waste contains many interference ions, including potassium and calcium, which 

will influence struvite formation and required optimization of chemical additives. 

According to Musvoto et al. (2000), struvite precipitates at neutral and higher pH 

provided a Mg/Ca molar ratio > 0.6. Various authors (Schuiling and Andrade, 

1999; Wilsenach et al., 2007) have observed that potassium struvite 

(MgKPO4·6H2O) can precipitate instead of ammonium struvite under low 

ammonium concentrations, which was not the case in any of the experiments 

presented in this thesis. 

Although struvite composting of food waste looks feasible and fascinating, 

little knowledge is available. Therefore, this research mainly focuses on struvite 

composting of food waste, with the main goal of improving the composting 

process and restore nutrients through experiments in four different phases. In the 

first phase, the feasibility of struvite formation during the food waste composting 

process with external addition of Mg and P salts was studied. Considering the fast 

acidification rate of food waste during composting, MgO and K2HPO4 were 

chosen as Mg and PO4 sources for struvite precipitation and buffering of pH. The 

Phase I experimental details and results are presented in Chapter 4. In Phase II, 

three different batch experiments were conducted in order to understand the 

factors influencing struvite composting of food waste and improve the nitrogen 

recovery efficiency. The detailed procedures and major outcomes are presented in 

Chapters 5-7. Odour emissions and microbial diversity changes during struvite 

composting of food waste were studied in Phase III, as detailed in Chapter 8. 
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Finally, nutrient release of struvite compost and its effects on plant growth were 

studied in Phase IV (Chapter 9). 

10.2. Phase I (Chapter 4): Study findings and major outcomes 

The feasibility of struvite formation and the buffering effect of the alkaline 

salts MgO and K2HPO4 were investigated for ammonia conservation during food 

waste composting. MgO and K2HPO4 were used in two different molar ratios (P1 

1:1; P2 1:2) for struvite precipitation in food waste composting. While a negative 

control without any chemical additions and lime addition (treatment L) as positive 

control for pH regulations were tested in parallel for comparison. Addition of 

K2HPO4 at 0.1M/kg was found to be effective and buffered the composting mass 

in the narrow range between 6.8 and 8.7, which ensured an optimum pH for both 

microbial degradation and struvite formation. This indicated that K2HPO4 could 

be a buffering reagent, but only when a sufficient quantity was added. From the 

XRD and SEM-EDS analysis, a typical struvite profile was detected in compost 

mass from treatment P2, but was not found in treatment P1, even with added Mg 

and P salts, which could be linked with the low pH conditions. The formation of 

struvite in treatment P2 effectively reduced the nitrogen loss from 40.8% to 23.3%, 

compared to treatment L. These results indicate that addition of 0.1 M/kg of Mg 

salts was the minimum requirement for buffering the food waste composting 

system and also for achieving nitrogen conservation via struvite formation. 

However, the electrical conductivity of the compost mass increased with the 
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addition of Mg and PO4 salts to high levels and reached 6.14 mS/cm, which was 

found to be higher than the control or lime treatments and retarded seed 

germination, which introduces a risk for plant growth during compost application 

and requires further investigation to improve this technology. 

10.3. Phase II (Chapter 5-7): Study findings and major outcomes 

Optimization of alkaline material (lime) additions during struvite composting 

of food was tested. The negative effects of interference ions on struvite formation 

were also investigated and conditions were optimized for struvite composting of 

food waste in Phase II. 

In Chapter 5, the pH of the food waste was adjusted by use of the common 

effective alkaline material lime to accelerate the compost maturity and maintain 

the pH for struvite formation. Lime was mixed with raw materials at different 

dosages (0.75-3%) and 2.25% lime found to be the most effective in improving 

the pH to an alkaline range during the food waste composting process. Also, this 

treatment significantly improved the degradation of active organic components, 

such as DOC and SON, which strongly correlated with low EC values and a high 

seed germination index of compost mass. The lime additions seem to be effective 

during food waste composting, however, the nitrogen loss as ammonia was high 

(44.3%, also explained in Phase I). Whereas, ammonia loss was comparatively 

lower when coupled with struvite precipitation (0.33%, 19.1%, and 27.4% for the 

treatments SL0.75, SL1.5, and SL2.25, respectively, except for SL3 where 
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ammonia loss was 48.0%). The acid soluble ammonium concentrations were 

decreased from 601.7 to 147.2 mg/kg in treatments SL2.25 and SL3, indicating 

that the lime addition was likely inducing negative effects on struvite formation. 

Therefore, to couple with struvite composting of food waste, 2.25% lime addition 

is recommended. 

The Mg2+, Ca2+, K+, NH4
+, and PO4

3- ions from food waste were readily 

solubilized during the composting processes. So the possible precipitates that 

could be expected/formed during food waste composting with external addition of 

Mg and PO4 were struvite (MgNH4PO4⋅6H2O), potassium struvite 

(MgKPO4⋅6H2O), newberyite (MgHPO4⋅3H2O), amorphous calcium phosphate 

(Ca3(PO4)2⋅3H2O), and HAP Ca5(PO4)3(OH). Potassium struvite (KMP) can 

precipitate instead of struvite (MAP) under low ammonium concentrations. 

Therefore, K2HPO4, Na2HPO4, and H3PO4 were selected as treatments L-K, L-Na 

and L-H, respectively, to investigate the effect of addition on struvite 

crystallization and nitrogen conservation (Chapter 6). During the composting 

process, struvite was detected in all treatments. However, EDS data of struvite 

like materials from the compost mass confirmed that the presence of a distinctive 

Ca peak since lime was added in treatments L-K, L-Na, and L-H. Even K and Na 

were found in the struvite formed from treatments L-K and L-Na, respectively, 

due to different phosphate sources used in struvite formation. However, the XRD 

results proved that these ions, Ca, K, and Na, were attached only on the surface of 

the struvite crystals, rather constituted in the crystal structure (Le Corre et al., 
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2005; Liu, 2009). Approximately 16.8, 10.3, 12.7, and 12.2 g of nitrogen were lost 

from treatments L, L-K, L-Na , and L-H respectively, when 1 kg of organic matter 

was decomposed. The differences in nitrogen loss between treatments with 

different P salts were not significant and indicated that the presence of K+ did not 

inhibit struvite formation, while contributing to the total nutrient content of the 

final product. 

Unlike K, Ca is highly competitive for phosphate ions in the medium and 

reduces the mobility of phosphate. To understand the effect of Ca2+, MgO was 

gradually substituted for CaO to evaluate the nitrogen dynamic changes and N 

conservation by struvite formation (Chapter 7). Both lime and MgO were found to 

effectively buffer the pH and resulted in enhanced decomposition rate. Whereas, 

treatment M0.45, which used only MgO without any lime, had poor 

biodegradation rates and lower nitrogen conservation rates, leading to high 

product salinity caused by available magnesium ions. Along with decreasing lime 

dosage, ammonia emissions were also significantly reduced (46.1, 43.5, 34.2, 28.9, 

and 27.5% in treatments L, M0, M0.15, M0.3, and M0.45, respectively). This 

indicated that the presence of Ca2+ ions influences struvite formation, either by 

competing for phosphate ions or by interfering with crystallization. But this 

negative effect could be ignored when the Ca2+/Mg2+ ratio was below 1:2. Thus, 

the best conditions for struvite composting of food waste were found to be a 

Ca2+/Mg2+ ratio in 1:2 with addition of K2HPO4. 

10.4. Phase III (Chapter 8): Study findings and major outcomes 
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Odour emissions from composting plants are a major concern for 

implementing this technology in urban centers. As one of the major odours, NH3 

emissions were effectively reduced by struvite composting and conditions were 

optimized (as discussed above). However, the exhaust gas contained a mixture of 

gaseous pollutants that required monitoring and control, yet little information has 

been published. In Chapter 8, the odour emissions and microbial successions 

during struvite composting of food waste were studied and reported. 

The distibution of two major odour components, ammonia and VFAs, in 

exhaust gas differs based on different conditions and phases of the composting 

process. Acetic acid, butyric acid, and iso-valeric acid were the dominate 

compounds in treatment C with unregulated pH. Struvite precipitation of 

ammonium during food waste composting in treatment M0.3 reduced the odour 

problem and significantly reduced the max OU of ammonia, from 3.0×104 to 

1.8×104, resulting in an OIMAX lower than that found for treatment L. Meanwhile, 

29% reduction of NO emission was achieved in treatment M0.3. 

In addition, pH was found to be the most important driving factor for 

bacterial community shifts in food waste composting systems. Lactobacillus sp. 

dominated under acidic conditions and made the conditions more acidic due to the 

generation and accumulation of high concentrations of acetic acid and butyric 

acids. However, a close correlation was not established between low pH and 

iso-valeric acid, which may be one of the intermediate products in the organic 

matter decomposition process. The addition of phosphate salts in M0.3 improved 

198 
 



the variation of the total bacterial population, which increased the stability of 

composting system and provided better decomposition rates. 

10.5. Phase IV (Chapter 9): Study findings and major outcomes 

In Chapter 9, the nutrient release capacity of food waste compost containing 

struvite and its effects on plant growth were studied to improve the understanding 

of possible applications. Normal mature food waste compost was used as a control 

for comparison with both incubation and green house experiments. The pH of 

barren soil from the New Territories of Hong Kong could be significantly 

improved with food waste compost and struvite compost additions. The soil 

amended with struvite compost had more nutrients than the soil treated with 

normal compost. The nitrogen release rates were increased with increasing 

compost/soil ratio, but phosphorus release was not affected. Meanwhile, soil 

salinity significantly increased with increasing application ratio and significantly 

affected plant growth, especially the root systems, which were more sensitive to 

the high application ratio of 10%. The optimum application dosage of 5% struvite 

compost improved the shoot and root biomasses more than normal food waste 

compost. 

For short term plant growth, the leaf vegetable Chinese cabbage was used in 

pot trials with different compost amendment rates. The cabbage biomass from 

treatment S5 was significantly higher than treatment L5 and comparable with 

treatment F, which contained inorganic fertilizer. Positive correlations were 

199 
 



established between the nitrogen content of cabbage and total nitrogen input into 

the soil through struvite compost addition, indicating that the additional nutrients 

effectively simulated growth of leafy vegetables. However, the correlation was not 

established with the cultivation of the long term plant Cherry tomato with struvite 

compost pot trials. Compared with Chinese cabbages, Cherry tomato had a 

relatively longer growth period and larger biomass that demanded more nutrients. 

After the harvest of Cherry tomato, the available N contents in soil were very low 

in all treatments, indicated N amounts may not be sufficient, while P was still 

abundant in soil after plant growth. Treatment S5 achieved the highest shoot 

biomass (8.72 g/plant), which was significantly higher than all other treatments.  

Overall, study results proved that the high salinity content of normal food 

waste compost (with lime) at a high application rate (i.e., 10%) significantly 

affected root growth, which is hard to recover from, especially when the plant was 

small before transplant. Therefore, high nutrient struvite composts are 

recommended for use to reduce the application rate, alleviating the negative effect 

of high compost rate on plants. 

10.6. Future research direction 

The aim of developing improved composting technology for food waste 

treatment was achieved by this study. The composting treatment M0.3 with 0.3M 

MgO, 0.15M CaO, and 0.05M K2HPO4 was identified as the best condition for 

coupling struvite precipitation with compost maturity during food waste 
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composting. However, there are a few more avenues to continue improving the 

process that are recommended for future work. 

In Phase I, P2 treatment using 0.1M K2HPO4 as a pH buffer was found to be 

efficient in terms of organic degradation and higher nutrient content restoration in 

biomass. However, this treatment suffered in terms of salinity, which restricted 

plant growth at high application rates. Therefore, further experiments focusing on 

condition optimization for improving struvite formation and composting 

efficiency are suggested. 

Furthermore, a pilot-scale continuous production of struvite composting 

under optimized conditions is required and thus suggested for future work. We are 

confident that successful demonstration of this developing technology on a pilot 

scale would attract investors for commercialization. 
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