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Above two dimensions, diffusion of a particle in a medium with quenched random traps is believed to be
well described by the annealed continuous-time random walk. We propose an approximate expression for the
first-passage-time (FPT) distribution in a given sample that enables detailed comparison of the two problems.
For a system of finite size, the number and spatial arrangement of deep traps yield significant sample-to-sample
variations in the FPT statistics. Numerical simulations of a quenched trap model with power-law sojourn times
confirm the existence of two characteristic time scales and a non-self-averaging FPT distribution, as predicted
by our theory.
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I. INTRODUCTION

The diffusive motion of macromolecules is an essential
part of cellular life. It controls the speed of a large number
of cellular processes such as signaling, assembly of protein
complexes and molecular machines, and exit of mRNAs
from the cell nucleus [1–3]. Recent advances in in vivo
single-molecule imaging have greatly enriched our knowledge
of thermally driven transport in the heterogeneous intracellular
medium. Experimental measurements have generally indi-
cated a subdiffusive behavior of fluorescently tagged particles
in the cytoplasm and the nucleoplasm, as well as on the
plasma membrane [4–6]. The origin of the observed anomalous
phenomenon is still much debated.

Hitherto, the statistical characteristics of measured parti-
cle trajectories have mostly been interpreted using one of
the three theoretical models: the fractal Brownian motion
with temporal correlation of particle displacements [7–11],
the continuous-time random walk (CTRW) with power-law
sojourn times [12,13], or the obstructed diffusion caused by
organelles in the diffusion path [14,15]. While these models
present different scenarios for the cause of subdiffusive scaling
of particle displacement with time, they do not take into
account the quenched nature of the intracellular medium.
For diffusive transport across length scales larger than or
comparable to the size of chromosomes, endoplasmic reticula
[16], and other organelles, the environment is usually static
during the passage of a tracked particle. In such a situation,
one expects significant sample-to-sample variations whose
statistical mechanical characterization is challenging [17].

One of the well-known models in this context is the
quenched trap model (QTM) defined by a set of hopping
rates τ−1

i out of sites i on a d-dimensional lattice [18–23],
as illustrated in Fig. 1. The time constants τi are quenched
random variables drawn from a distribution Ps(τ ). Above the
critical dimension dc = 2 for returning walks, it is generally
expected that the QTM has the same scaling properties as the
CTRW where τi is reassigned according to the distribution
Ps(τ ) upon each visit to site i. The argument was formalized
in a renormalization group analysis by Machta [19].

Indications that the scaling properties of the QTM and that
of the CTRW may not be identical in high dimensions can be
found from previous studies of the first-passage time (FPT)

between start and target sites in a confined geometry. The
FPT has been suggested to be an important characteristic for
understanding reaction kinetics inside a cell [24,25]. Consider
a simple example illustrated in Fig. 1 where the start site is
at the center of a sphere of radius R and the target is any
site on the surface of the sphere. For this geometry and a
power-law distribution Ps(τ ) ∼ τ−μ−1 of trapping times τi , the
mean FPT was shown to scale with R as τQ ∼ Rd/μ [18,26]. In
comparison, for μ < 1, the typical FPT of the corresponding
CTRW is given by τtyp ∼ R2/μ, while the mean FPT diverges.
Since the mean FPT tends to be dominated by rare events
when the distribution has a fat tail, the above results suggest
a qualitatively different tail of the FPT distribution in the two
models.

In this paper we develop an analytic scheme to characterize
the full FPT statistics in the QTM and to investigate its
sample-to-sample fluctuations. Simple physical arguments are
presented to reveal the subtle differences in the rare-event
statistics between the quenched and annealed systems. The
two time scales, τtyp ∼ R2/μ for the longest trapping time on a
typical FPT trajectory and τQ ∼ Rd/μ for the longest trapping
time in the entire system, arise naturally from the discussion.
Based on these understandings, we propose a decomposition
scheme that expresses the FPT distribution as an ordered sum
of exponentials associated with deepest traps in a given sample.
Variations in the strength and location of these traps give
rise to sample-to-sample fluctuations in the tail of the FPT
distribution, which we characterize analytically. The analytic
results are shown to be in excellent agreement with numerical
simulations of the two models.

The paper is organized as follows. In Sec. II we define
the quenched trap model and mention a few of its basic
properties. Section III presents our analytic calculations of the
FPT distribution from the point of view of rare-event statistics.
Section IV contains results from numerical simulations of the
two models, highlighting sample-to-sample variations in the
QTM. A brief summary is given in Sec. V.

II. QUENCHED TRAP MODEL

The quenched trap model can be formulated as a Markov
process for a diffusing particle whose states are sites on
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FIG. 1. (Color online) First-passage trajectory (blue line) of a
diffusing particle in a quenched environment with deep traps (red
dots).

a d-dimensional hypercubic lattice with a lattice constant
a. The transition rate from site i to a neighboring site j

is given by Wi→j = (2d)−1τ−1
i . The hopping rate ki = τ−1

i

out of site i can be associated with a site energy Vi (<0)
through the Arrhenius law ki = ω0 exp(Vi/T ), where ω0 is the
attempt rate and T the ambient temperature. Of special interest
is when the site energies Vi are exponentially distributed

P (V ) = T −1
g eV/Tg (V < 0). (1)

Consequently, the distribution of τi follows a power law

Ps(τ ) = μω
−μ

0 τ−μ−1
(
τ > ω−1

0

)
. (2)

Here the exponent μ = T/Tg . Below we will choose τ0 ≡ ω−1
0

as the unit of time unless otherwise specified.
The QTM with a power-law distribution of sojourn time

constants (2) offers a plausible description of the diffusion
of a macromolecule in the aqueous cellular environment.
On short time scales, the molecule is trapped in a certain
volume of its size due to either nonspecific binding or the
cage effect as in colloidal glass. It has been argued that the
Gumbel distribution approximated by (1) is often encountered
when multiple factors of comparable strength contribute to the
trapping energy Vi [27]. On longer time scales, after breaking
off from the trap, the particle diffuses normally until it falls into
another trap. In this scenario, the path taken by the molecule is
simply a normal random walk, although the journey time may
have a very broad distribution. The lattice constant a can be
taken to be the linear size of a correlated volume in the medium,
beyond which the local potential Vi on the diffusing particle
changes to a substantially different value. The time constant τ0

should be chosen accordingly so that (2) provides an adequate
description for hopping between neighboring sites.

According to Eq. (1), the site energies are not bounded from
below. However, in a given realization of the disorder, there
will be a deepest trap at energy VQ = mini{Vi}. Let V � Rd

be the volume of the system and N = V/ad be the number
of independent sites. The cumulative distribution of VQ is

given by

CV (VQ,N ) = 1 − (1 − eVQ/Tg )N � 1 − exp(−N eVQ/Tg )

= ĈV

(
VQ

Tg

+ lnN
)

, (3)

where the scaling function Ĉ(u) = 1 − exp(−eu). Therefore,
the mean of VQ decreases logarithmically with N but its vari-
ance remains constant. Consequently, the energy difference
between the deepest and the second deepest trap, which can
be approximated by the difference in VQ in two independent
realizations of the disorder, is finite and independent of N .
The corresponding trapping time constant

τQ(R) = τ0 exp(−VQ/T ) � τ0(R/a)d/μ (4)

is greater than the second longest time by a factor.

III. ANALYTIC CALCULATION OF THE
FIRST-PASSAGE-TIME DISTRIBUTION

For diffusion-limited biochemical reactions inside a cell,
one is interested in the FPT of a molecule from its birth place
to the reaction site. In this work we focus on the statistics of
the FPT for individual cells. To simplify the discussion, we
adopt the simplest geometry as illustrated by Fig. 1, where the
molecule is launched from the origin at t = 0, and examine
the distribution F (t,R) of the FPT t to an enclosing spherical
surface of radius R. Nevertheless, our approach can be adapted
to more general geometries as considered by Bénichou et al.
[24] using results from the lattice random walk theory [28,29].

A. Continuous-time random walk

If the sojourn times of the diffusing particle at a given site
are not distributed in a site-dependent manner but instead fol-
low a common distribution such as Eq. (2), the corresponding
stochastic process is known as the continuous-time random
walk [12,18]. The CTRW can be considered as an annealed
version of the QTM, with the important difference that the
statistics of the journey time is independent of the path taken.
This subordination property allows one to write

FCTRW(t,R) =
∑
N

AN (R)fN (t), (5)

where AN (R) is the probability for a lattice random walker
to reach the boundary for the first time in N steps and fN (t)
is the probability distribution function of the journey time
tN = ∑N

i=1 ti . Under the continuum approximation at large N

(which plays the role of time) and R, the lattice random walk
is described by the diffusion equation, which, under the sub-
stitutions x → Rx and N → R2N , yields the scaling solution

AN (R) = R−2Âd (NR−2), (6)

where the FPT probability density function Âd (u) is peaked
around umax � 1 and decays exponentially at large u. On the
other hand, fN (t) exhibits a fat tail when the sojourn times ti
are distributed according to (2).

A particularly interesting case is μ < 1, where the mean
sojourn time ts = ∫ ∞

0 tPs(t)dt diverges [18,23]. In such a
situation, the sum tN is dominated by the largest term tmax
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whose typical value grows faster than linear in N . The latter
can be seen from the cumulative distribution of tmax,

Prob(tmax > t) = 1 −
N∏

i=1

Prob(ti < t) = 1 − (1 − t−μ)N

� 1 − exp(−Nt−μ). (7)

In Appendix A we show that, in this case, the tail of the
distribution of tN becomes identical to that of tmax,

fN (t) ≈ PN (tmax = t) = Nμ(1 − t−μ)N−1t−μ−1. (8)

Equations (7) and (8) show that the distributions of tmax

and of tN are both peaked around τtyp � N1/μ and have the
expected power-law tail beyond τtyp. Combining Eqs. (5)–(8),
we obtain the subdiffusive scaling [18,30]

FCTRW(t,R) �
∫

dN

R2
Âd

(
N

R2

)
Nμ exp

(
−N

tμ

)
t−μ−1

= μR2t−μ−1�(tR−2/μ) (μ < 1). (9)

Here �(z) = ∫ ∞
0 du uÂd (u) exp(−u/zμ) increases monoton-

ically with z and saturates to �∞ ≡ �(∞) at large z. Hence
FCTRW(t,R) is peaked at

τtyp(R) � τ0(R/a)2/μ. (10)

The corresponding cumulative FPT distribution takes the form

CCTRW(t,R) =
∫ ∞

t

dt ′F (t ′,R) = Ĉ(tR−2μ). (11)

Here Ĉ(z)= ∫ ∞
z

dy μy−μ−1�(y). For z	1, Ĉ(z)��∞z−μ.

B. The FPT distribution in the QTM

Equation (5) integrated over t is a special example of a
general formula for the cumulative FPT distribution

C(t,R) =
∑

�

W�C�(t), (12)

where the summation extends over all possible lattice walks
� connecting the launch site to the target. Here W� is
the probability for a path � in the lattice walk, with the
normalization

∑
� W� = 1, and C�(t) the probability that the

total passage time exceeds t . In terms of the sojourn time
distribution Pi(t) on site i, we may write

C�(t) =
∫

H

(
t −

∑
i∈�

ti

)∏
i∈�

Pi(ti)dti, (13)

where H (t) is the Heaviside step function.
For the CTRW, the sojourn time distributions Pi(t) are

identical for all sites. Hence C�(t) depends only on the path
length N , in which case paths with the same N can be grouped
together, leading to Eq. (5). On the other hand, C�(t) for
the QTM depends on the actual sites visited. An interesting
question is whether the disorder-averaged C�(t) depends only
on the path length N� but not its spatial trajectory. If so, the
ensemble-averaged C(t,R) can again be cast in the form of
Eq. (5).

The answer to the above question is in the affirmative if, on
the lattice walk �, each site visited appears only once, i.e., there

is no return to any given site on the path. For this group of lattice
walks, the disorder-averaged C�(t) is equivalent to its annealed
counterpart whose sojourn time distribution is given by

〈Pi(t)〉 =
∫ ∞

1

e−t/τ

τ

μdτ

τμ+1
= μt−μ−1

∫ t

0
xμe−xdx. (14)

Here and elsewhere we use 〈·〉 to denote the average over the
quenched disorder. It is easy to verify that Eq. (14) also has
a fat tail that decays as t−μ−1 at large t .

The theory of lattice random walks [28,29] can be applied
to calculate the distribution of returns for the setup illustrated
in Fig. 1. For d < 2, the typical number of returns grows
with R as R2−d (logarithmic at d = 2). Hence a different
scheme to compute the ensemble average of C(t,R) is required.
On the other hand, for d > 2, the return distribution decays
exponentially. Furthermore, the majority of returns to a given
site take place in a short section of the walk, allowing for a
renormalization group treatment of their effects on C�(t) [19].
In the following, however, we will take a different route to
reorganize terms in Eq. (12) to compute C(t,R), focusing on
contributions from the deepest traps.

The calculation in Appendix A shows that C�(t) has an
exponential tail with a time constant τ� = ∑

i∈� τi . Further-
more, under Eq. (2) at μ < 1, τ� is dominated by the largest
trapping constant τmax,� = maxi∈�{τi}. These observations
suggest that C�(t) may be replaced by the cumulative sojourn
time distribution at the deepest trap on path �. More precisely,
labeling each path � by τmax,� , we rewrite Eq. (12) as

C(t,R) =
∑

i

Ci(t,R), (15)

where the partial sum

Ci(t,R) =
∑

�,i∈�,τi=τmax,�

W�C�(t) (16)

is restricted to paths � that go through site i with τi the largest
trapping constant on �.

To proceed further, we introduce a single-trap model where
τj = τ0 for all sites except at site i located a distance r from
the center of the sphere, for which τi = τQ 	 τ0(R/a)2. In
Appendix B we present a calculation of the probability that
the trap is visited by a first-passage trajectory illustrated in
Fig. 1,

w(r,R) � (1 − fd )
2d

Sd

r2−d − R2−d

d − 2
(1  r < R). (17)

Here fd is the probability of return on an infinite lattice and
Sd = 2πd/2/�(d/2) is the surface area of unit sphere. For
simple cubic lattice, f3 � 0.34. Taking into account multiple
visits [28], the calculation yields an exponential tail for the
cumulative FPT distribution with a renormalized time constant

C1(t,R|τQ,r) � w(r,R) exp(−ed t/τQ), (18)

where ed ≡ 1 − fd is the probability of no return. Contribu-
tions from paths that do not go through the trap die out at times
much shorter than τQ.

We now compare Eq. (16) with (18) when the site i

corresponds to the deepest trap in the system, with τi = τQ.
In this case, the sum in Eq. (16) includes all paths that go
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through site i, as in the single-trap model. The total time spent
on other sites on the path is of the order of τtyp(R) in Eq. (16)
and τ0(R/a)2 in the single-trap model, respectively. Hence, in
both cases, the total passage time is well approximated by the
sojourn time on the deepest trap. This allows us to write, for
the deepest trap,

Ci(t,R) � C1(t,R|τi,ri), (19)

where ri is the distance of site i to the origin.
For the second deepest trap in the system, the same

argument leading to (19) applies except that the right-hand
side of the equation contains extra contributions from paths that
visit both the deepest and the second deepest trap. To eliminate
such terms, we need to replace w(r,R) in Eq. (18) with
w(i,j,R), which gives the probability of reaching the boundary
via site i with an absorbing site at j . Continuing the procedure
to the (n + 1)th deepest trap, one needs to compute the visit
probability to the site in question in the presence of n absorbing
sites and the system boundary, which is quite challenging.
However, using the annealed approximation that, in each step,
the walker has a probability p = n/N to run into one of
these sites, we obtain the survival probability (1 − p)N �
exp(−nN/N ) in an N -step walk. Applying this estimate to
first-passage trajectories with N � R2, we see that Eq. (19)
holds approximately when n < nc = N /N � (R/a)d−2, but
for weaker traps, Ci(t,R) diminishes rapidly. The trapping time
constant at nc satisfies (τ/τ0)−μ = nc/N = (R/a)2, yielding
a cutoff time constant τtyp(R) given by Eq. (10).

The above discussion yields the following approximate
expression for the probability that the FPT in a given sample
is greater that t ,

CQTM(t,R) �
∑

i,τi>τtyp(R)

C1(t,R|τi,ri), (20)

where C1(t,R|τi,ri) at t > τtyp(R) is given by Eq. (18). Each
term in the sum decays exponentially with a time constant
given by the strength of the trap. The largest time constant is
set by the deepest trap in the system.

Given the simple mathematical form of Eq. (20), various
properties of the QTM can be derived analytically. For
example, as we show in Appendix C, the mean and variance
of C(t,R) over different disorder realizations are easily
computed. For 2 < d < 4, the results are given by

〈C(t,R)〉 � μe
1−μ

d R2t−μγ

(
μ,

edt

R2/μ

)
, (21)

〈[�C(t,R)]2〉 � μ(2ed )2−μS−1
d

d

4 − d
R4−d t−μγ

(
μ,

2ed t

R2/μ

)
.

(22)

Here γ (μ,z) = ∫ z

0 dx xμ−1e−x is the incomplete gamma func-
tion. As expected, the ensemble-averaged FPT distribution
(21) is essentially the same as that of the CTRW. On the other
hand, its relative fluctuation satisfies the scaling

〈[�C(t,R)]2〉1/2

〈C(t,R)〉 = R−(d−2)/2f (tR−2/μ), (23)

where f (z) ∼ zμ/2 for z 	 1. The normalized fluctuation is
proportional to (t/τQ)μ/2 in the intermediate time regime

τtyp < t < τQ and becomes of order 1 or bigger when t exceeds
τQ.

IV. SIMULATION RESULTS

We performed extensive kinetic Monte Carlo simulations
of the CTRW and the QTM on the three-dimensional simple
cubic lattice to verify the analytic results presented in Sec. III.
In each run, a particle is released from the origin at t = 0 and
performs an unbiased random walk through nearest-neighbor
hops. The walk is terminated when the particle, for the first
time, reaches a site at a distance greater than R from the origin.
The total passage time is given by the sum of sojourn times
at each stop along the path. In the case of the CTRW, the
sojourn times are drawn independently from the distribution
(2). For the QTM, a set of trapping time constants τi is first
assigned to the lattice sites. The actual sojourn time upon each
visit to a given site follows an exponential distribution with
the preassigned time constant. The system sizes investigated
are from R = 7 to 15.

A. The FPT distribution

Figure 2 shows three examples for the cumulative distri-
bution function C(t,R) at R = 7 and μ = 0.71. Here τtyp =
R2/μ = 240 in units chosen. More than 106 trajectories are
generated to obtain accurate statistics. As can be seen from
the figure, for both the CTRW and the QTM, C(t,R) begins
to drop from its maximum value 1 around τtyp. The shape of
C(t,R) from the two samples in the QTM is quite similar for
t around τtyp, confirming that the most probable value of the
FPT in the QTM does not vary significantly from sample to
sample and coincides with its annealed counterpart CTRW. In
the tail part of the FPT distributions, however, the two samples
in the QTM show progressively larger deviations from the
power law C(t,R) � R2t−μ (dash-dotted line) that describes
well the CTRW data. At very long times, C(t,R) from the
QTM exhibits the exponential decay predicted by the theory

101 102 103 104 105 106

t

10-3

10-2

10-1

100

C
(t,
R)

CTRW
sample A
sample B
Eq. (20) for sample A
Eq. (20) for sample B

R2t−μ

FIG. 2. (Color online) Cumulative distributions of the first-
passage time from simulations of the CTRW model and the QTM on
the three-dimensional simple cubic lattice. Here R = 7 and μ = 0.71.
Dashed lines are computed using Eq. (20) for the specific trap
configuration in each of the two samples, respectively.
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10-4

10-3

10-2

10-1

100

<
C(
t,R

)>

R = 7
R = 11
R = 15
Eq. (21)

10-1 100 101 102 103 104 105

tR-2/μ

10-3

10-2

10-1

100

101

R(d
-2

)/2
<[

ΔC
(t,
R)

]2 >1/
2 /<
C

(t,
R)

>

R = 7
R = 11
R = 15
Eq. (23)

(a)

(b) R−1/μt1/2

R2t-μ

FIG. 3. (Color online) Simulation data of the QTM on the three-
dimensional simple cubic lattice at μ = 0.71. (a) Scaling plot of
the mean cumulative FPT distribution for three different system
sizes R = 7 (black line), 11 (red line), and 15 (green line), together
with numerical evaluation of Eq. (21) (dashed line). (b) Scaling plot
of the relative fluctuation of the cumulative FPT distribution from
simulations of the QTM at three different sizes, along with numerical
evaluation of Eq. (23).

presented in Sec. III. The tail part of the FPT distribution in
each case is well described by Eq. (20).

Figure 3 shows our simulation data for the disorder-
averaged C(t,R) and its relative fluctuation from 10 000
realizations of the QTM at the three system sizes R = 7,
11, and 15. Also shown are numerical evaluations of the
corresponding analytic expressions presented in Sec. III.
Excellent data collapse upon scaling of the variables is seen
over six decades in time. Both Eqs. (21) and (23) are in
quantitative agreement with simulation data on the tail side
of the FPT distribution. For t < τtyp � R2/μ, Eq. (21) yields a
value ed � 0.66 less than 1, presumably due to contributions
from trajectories not included in the sum (20). The latter is
also responsible for the discrepancy between Eq. (23) and
the simulation data in the short time regime, where the actual
sample-to-sample variations of C(t,R) decrease rapidly due to
self-averaging. Taken together, the simulation results confirm
quantitatively the decomposition scheme (20) for the tail of
the FPT distribution in the QTM.

B. Hit map

We have also monitored the statistics of the end position of
the first-passage trajectories as a function of the passage time
t . This defines a time-dependent hit map on the absorbing
surface. For the CTRW, since the trajectories are spatially
independent of each other, the hit map is uniform at all times

102 103 104 105 106

t

10-3

10-2

10-1

100

Δh
/h

0

CTRW
QTM

τtyp τQ

FIG. 4. Relative hit density fluctuation in the CTRW and QTM.
Here R = 15 and μ = 0.71.

apart from statistical fluctuations when only a finite number
of hits are registered. However, the QTM is expected to show
a correlated hit density pattern that evolves over time. Sites
with long sojourn time constants cause delay to trajectories
going through them, thereby casting their shadows on the
absorbing surface at short times. At very long times, however,
all lattice random walks will have sufficient time to complete
their journey and uniformity is restored.

To construct the spatially resolved landing probability on
the absorbing surface, we first record H (x|t,R), the number of
hits registered at site x up to time t . Since a regular lattice is
used in the simulations, different surface sites have a different
cross section to capture the incoming walkers. To minimize
this effect, we performed local averaging by collecting hits
into a neighborhood instead of a single site on the boundary.
The neighborhood �x of a given boundary site x includes the
site itself plus its nearest neighbors and next-nearest neighbors
that are also boundary sites. Let Nx be the number of boundary
sites in �x. A coarse-grained hit number is defined as

HCG(x|t,R) = 1

Nx

∑
x′∈�x

H (x′|t,R). (24)

Using the coarse-grained data, we further normalize against
HCG(x|t = ∞,R) to remove the lattice effect, i.e., by intro-
ducing the normalized cumulative hits

h(x|t,R) ≡ HCG(x|t,R)

HCG(x|∞,R)
. (25)

Figure 4 shows the relative spatial fluctuation of h(x|t,R) in
a system of size R = 15 by taking statistics over 107 launches.
Here

h0(t,R) = 〈h(x|t,R)〉x, (26)

�h(t,R) = [〈h2(x|t,R)〉x − h2
0(t,R)

]1/2
, (27)

where 〈·〉x denotes average over all boundary sites. For both
the QTM and the CTRW, the relative fluctuation decreases
as the number of hits accumulate. It is also evident that the
spatial inhomogeneity is much stronger in the QTM than in the
CTRW. Ideally, one expects the hit pattern to saturate around
τQ when most of the walkers have completed their journey to
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FIG. 5. (Color online) Earth plot of the normalized hit map on
the absorbing surface at R = 15. Here μ = 0.71. (a) One sample of
the QTM at t = 6200. (b) Same sample at t = 20 000. (c) CTRW at
t = 6200. (d) CTRW at t = 20 000.

the absorbing surface. Equation (25) somewhat underestimates
this terminal fluctuation by adopting HCG(x|∞,R) as the
normalization. The latter contains both the lattice effect and
residual fluctuations in a finite number of launches.

Figure 5(a) shows the actual hit map

hr(x|t,R) ≡ h(x|t,R)

h0(t,R)
(28)

for the QTM sample at t = 6200 � 3τtyp, where 50% of the
launched particles have landed. At this time, maximum density
variation on the surface reaches close to 50%. Figure 5(b)
shows the hit map of the same QTM sample at a much later
time t = 20 000 � 10τtyp, where about 80% of the particles
have arrived. Although the amplitude of the density variation
has decreased from Fig. 5(a), the patterns of high and low
densities resemble each other. Figures 5(c) and 5(d) show the
corresponding maps under the CTRW dynamics, where the
density fluctuations are much weaker.

V. CONCLUSION

In this paper we have shown that the QTM above its critical
dimension dc = 2 still differs from its annealed counterpart
CTRW in the first-passage-time statistics. For power-law
distributed sojourn times at μ < 1 where the particle motion
becomes subdiffusive, the tail of the FPT distribution for a
given sample is well approximated by a sum of exponentials
whose time constants are associated with the deepest traps in
the system. Intuitively, this behavior can be understood from
rare-event statistics where the passage time of each trajectory
is dominated by the strongest trap visited by the walker. By
grouping trajectories that go through the same trap, one obtains
constitutive terms in the FPT distribution, with weights and a
renormalized time constant that can be calculated by applying
the theory of lattice random walk. The largest time constant in
a given sample of linear size R scales with R as τQ � Rd/μ.
The cutoff time constant τtyp � R2/μ for traps that contribute
to the summation is the typical FPT in such a system.

A detailed comparison of our analytic expressions against
simulations of the QTM shows quantitative agreement in the
tail of the FPT distribution. For the peak part of the FPT
distribution, however, our treatment is not sufficient to produce
quantitatively accurate results, though the predicted scaling

with the system size R is well obeyed by simulation data.
In the future one may consider improvements of the single-
trap approximation by, e.g., replacing contributions from less
strong traps by an annealed average with a suitable cutoff, as
in the solution of the random energy model [31].

The QTM differs from the CTRW also in the spatially
resolved arrival probability on the absorbing boundary, whose
relative variation can be as big as 50%. It would be interesting
to see if such “shadows” of strong traps can be measured
in experiments on, say, the exit statistics of mRNAs through
nuclear pores. With sufficient statistics, the exit pattern may
enable detection of large-scale movement of chromosomes
inside the cell nucleus.
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APPENDIX A: RARE-EVENT-DOMINATED
PASSAGE TIME

To justify the replacement of the total elapsed time of a
given passage by the largest sojourn time on the path in our
treatment of the CTRW, let us compare the distribution of the
sum tsum = ∑N

i=1 ti and that of the largest term in the sum
tmax = maxi{ti}. Denoting by P (t) and fN (t) the distributions
of ti and tsum, respectively, we have

fN (t) =
〈
δ

(
t −

N∑
i=1

ti

)〉
, (A1)

where angular brackets denote averaging over the distribution
of the ti’s. Their Laplace transforms are given respectively by

P̂ (s) =
∫ ∞

0
P (t)e−st dt = 〈e−st 〉, (A2)

f̂N (s) =
∫ ∞

0

〈
δ

(
t −

N∑
i=1

ti

)〉
e−st dt = [P̂ (s)]N. (A3)

Consider now the power-law distribution (2) at ω0 = 1. For
μ < 1, its Laplace transform is given by

P̂ (s) = 1 − �(1 − μ)sμ + μ

∞∑
n=1

(−1)n−1

n!

sn

n − μ
. (A4)

For Nsμ  1 we have P̂ (s) � 1 − �(1 − μ)sμ and f̂N (s) �
1 − �(1 − μ)Nsμ. Hence we expect fN (t) � Nμt−μ−1 for
t 	 N1/μ, in agreement with Eq. (8).

In the QTM, the sojourn times ti on the path each satisfies
its own distribution

Pi(ti) = τ−1
i exp(−t/τi) (A5)

with a site-dependent time constant τi . The Laplace transform
(A3) is modified to

f̂�(s) =
∏
i∈�

1

1 + τis
. (A6)
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For small s, we have f̂�(s) � 1 − τ�s, where τ� = ∑
i∈� τi .

Hence f�(t) decays exponentially at large t with a time
constant τ� . In the case when τi’s are distributed according
to Eq. (2), τ� can be approximated by the largest time constant
τmax,� on the path. Multiple visits to the deepest trap can also
be treated as in Appendix B.

APPENDIX B: SINGLE-TRAP MODEL

In Sec. III B we introduced a single-trap model where the
hopping rate ki = τ−1

0 except at the trap site located at a
distance r from the center of a sphere of radius R, where
ki = τ−1

Q . We assume τQ 	 τ0(R/a)2 so that the tail of the
FPT distribution is dominated by trajectories that make at least
one visit to the trap. Here a is the typical distance traveled by
the walker in a time τ0 when outside the trap.

Let us first revisit the problem of a discrete-time random
walk on a d-dimensional hypercubic lattice, paying special
attention to the presence of an absorbing boundary S. In each
step, the walker leave its current site and moves to one of its
neighbors with equal probability. The probability P (x,n) that
the walker is at site x after n steps satisfies the lattice diffusion
equation

P (x,n + 1) = 1

2d

∑
x′∈n.n. of x

P (x′,n). (B1)

We introduce

�(x) ≡
∞∑

n=0

P (x,n). (B2)

For a walker launched from the origin, summing both sides of
Eq. (B1) over n yields

1

2d

∑
x′∈n.n. of x

�(x′) − �(x) = −δx,0. (B3)

Here δx,0 = 1 if x is at the launch site and zero otherwise.
Equation (B3) is a lattice version of the Poisson equation whose
continuum limit takes the form

1

2d
∇2� = −δ(x). (B4)

The solution of Eq. (B4) with the boundary condition �(|x| =
R) = 0 is given by

�(x) = 2d

Sd

1

d − 2

(
1

|x|d−2
− 1

Rd−2

)
. (B5)

Here Sd = 2πd/2/�(d/2) is the surface area of a unit sphere
in d dimensions.

We now compute the probability Q(x,n) that the walker,
launched from the origin, arrives at site x for the first time in
n steps. Quite generally, we may write

P (x,n) =
n∑

n′=1

Q(x,n′)U (x,n − n′) (n > 0). (B6)

Here U (x,n) is the probability that a walker launched from
x returns to the same site in n steps. Summing both sides of

Eq. (B6) over n, we obtain

�(x) = δx,0 + 
(x)
∞∑

n=0

U (x,n), (B7)

where


(x) ≡
∞∑

n=1

Q(x,n) (B8)

is the probability that the walker visits site x before being
absorbed by the boundary S. Applying Eq. (B7) to the site
x = 0, we obtain the probability of return


(0) = 1 − 1

�(0)
. (B9)

For d > 2, P0 ≡ limR→∞ �(0) is finite. Hence Pólya’s
random-walk constant fd ≡ 
(0) = 1 − 1/P0 is less than one.
Equivalently, the probability of no return ed = 1 − fd > 0. In
general, the probability of precisely k returns is given by

fd,k = (fd )ked . (B10)

When the absorbing boundary S is at a finite distance, the
above results acquire a correction that essentially goes down
as ξ 2−d , where ξ is the distance to the nearest point on the
boundary. Ignoring such corrections, we may approximate
U (x,n) by P (0,n). Consequently, Eq. (B7) yields


(x) � �(x)

�(0)
≡ w(|x|,R) (x �= 0). (B11)

Here

w(r,R) = (1 − fd )
2d

Sd

1

d − 2

(
1

rd−2
− 1

Rd−2

)
(B12)

is the probability to visit a site at distance r from the launch site,
in the presence of the absorbing sphere of radius R. Returning
to the lattice walk, the divergence of Eq. (B12) at small
distances should be truncated when r becomes comparable
to the lattice constant.

We now return to the single-trap model where the sojourn
time t spent by the walker upon each visit to the trap satisfies
the distribution

p(t) = τ−1
Q exp(−t/τQ). (B13)

Under the assumption that τQ is much greater than the typical
FPT to the boundary when trap is not visited, we may write
the FPT distribution of the single-trap model as

F1(t) � [1 − w(r,R)]δ(t) +
∞∑

k=1

wk(r,R)

〈
δ

⎛
⎝t −

k∑
j=1

tj

⎞
⎠〉

.

(B14)
Here the angular brackets indicate an average over the sojourn
times {tj } distributed according to (B13) and

wk(r,R) = (fd )k−1edw(r,R) (k > 0) (B15)

is the probability that the trap is visited exactly k times before
the walker reaches the boundary S.
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The Laplace transform of Eq. (B14) is given by

F̂1(s) = 1 − w(r,R) +
∞∑

k=1

wk(r,R)
k∏

j=1

〈e−stj 〉. (B16)

From Eq. (B13) we obtain 〈e−st 〉 = 1/(1 + sτQ). With the help
of Eq. (B15) we then have

F̂1(s) = 1 − w(r,R) + edw(r,R)
1

ed + sτQ

. (B17)

Consequently,

F1(t) � [1 − w(r,R)]δ(t) + w(r,R)
ed

τQ

exp(−ed t/τQ). (B18)

See also Ref. [24] for a general discussion on the decomposi-
tion. Integrating the tail of the distribution, we obtain Eq. (18).

APPENDIX C: STATISTICS OF C(t,R) IN THE QTM

The sum in Eq. (20) is restricted to sites with τi > τtyp(R).
Alternatively, we may extend the sum to all sites inside the
sphere, where a given site i contributes a term

ci(t) =
{
w(ri,R)e−ed t/τi for τi > τtyp(R)
0 otherwise.

(C1)

The mean and variance of ci are given by

〈ci(t)〉 =
∫ ∞

τtyp(R)
dτ

μ

τμ+1
w(ri,R)e−ed t/τ

= t−μw(ri,R)
μ

e
μ

d

γ

(
μ,

edt

τtyp(R)

)
, (C2)

〈[�ci(t)]
2〉 = w2(ri,R)

[ ∫ ∞

τtyp(R)
dτ

μ

τμ+1
e−2ed t/τ

−
( ∫ ∞

τtyp(R)
dτ

μ

τμ+1
e−ed t/τ

)2]

= t−μw2(ri,R)

[
μ

(2ed )μ
γ

(
μ,

2ed t

τtyp(R)

)

−t−μ μ2

e
2μ

d

γ 2

(
μ,

edt

τtyp(R)

)]
. (C3)

Here γ (μ,z) = ∫ z

0 dx xμ−1e−x is the incomplete gamma
function. Since the τi’s are independently chosen from the
distribution (2), the ci’s are also statistically independent.
Hence the mean and variance of C(t,R) = ∑

i ci(t) are given
by

〈C(t,R)〉 �
∫

|x|<R

ddx t−μw(|x|,R)
μ

e
μ

d

γ

(
μ,

edt

τtyp(R)

)
,

(C4)

〈[�C(t,R)]2 �
∫

|x|<R

ddx t−μw2(|x|,R)
μ

(2ed )μ
γ

(
μ,

2ed t

τtyp(R)

)
,

(C5)

where we have replaced summation over i by integral over
space inside the sphere. For 2 < d < 4, carrying out the
integrals over x yield Eqs. (21) and (22). For d > 4, the integral
over x in Eq. (C5) is dominated by contributions close to the
origin and hence the lattice cutoff should be considered.

[1] E. Barkai, Y. Garini, and R. Metzler, Phys. Today 65(8), 29
(2012).

[2] P. C. Bressloff and J. M. Newby, Rev. Mod. Phys. 85, 135 (2013).
[3] See, e.g., New Models of the Cell Nucleus: Crowding, Entropic

Forces, Phase Separation, and Fractals, edited by R. Hancock
and K. W. Jeon (Academic, New York, 2013).
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