2013

Full friendly index sets of slender and flat cylinder graphs

Wai Chee Shiu
Hong Kong Baptist University, wcshiu@hkbu.edu.hk

Man-Ho Ho
Hong Kong Baptist University

This document is the authors' final version of the published article.
Link to published article: http://toc.ui.ac.ir/article_3678.html

Recommended Citation
FULL FRIENDLY INDEX SETS OF SLENDER AND FLAT CYLINDER GRAPHS

W. C. SHIU* AND M.-H. HO

Communicated by Ivan Gutman

ABSTRACT. Let $G = (V, E)$ be a connected simple graph. A labeling $f : V \to \mathbb{Z}_2$ induces an edge labeling $f^* : E \to \mathbb{Z}_2$ defined by $f^*(xy) = f(x) + f(y)$ for each $xy \in E$. For $i \in \mathbb{Z}_2$, let $v_f(i) = |f^{-1}(i)|$ and $e_f(i) = |f^*-1(i)|$. A labeling f is called friendly if $|v_f(1) - v_f(0)| \leq 1$. The full friendly index set of G consists all possible differences between the number of edges labeled by 1 and the number of edges labeled by 0. In recent years, full friendly index sets for certain graphs were studied, such as tori, grids $P_2 \times P_n$, and cylinders $C_m \times P_n$ for some n and m. In this paper we study the full friendly index sets of cylinder graphs $C_m \times P_2$ for $m \geq 3$, $C_m \times P_3$ for $m \geq 4$ and $C_3 \times P_n$ for $n \geq 4$. The results in this paper complement the existing results in literature, so the full friendly index set of cylinder graphs are completely determined.

1. Introduction

Let $G = (V, E)$ be a simple connected graph. A vertex labeling $f : V \to \mathbb{Z}_2$ induces an edge labeling $f^* : E \to \mathbb{Z}_2$, given by

$$f^*(xy) := f(x) + f(y),$$

where $xy \in E$. For $i \in \mathbb{Z}_2$, define $v_f(i) = |f^{-1}(i)|$ and $e_f(i) = |(f^*)^{-1}(i)|$, i.e., $v_f(i)$ is the number of vertices labeled by i and $e_f(i)$ is the number of edges labeled by i. A vertex labeling f is said to be friendly if

$$|v_f(1) - v_f(0)| \leq 1.$$
For a friendly labeling f of a graph G the friendly index of G with respect to f, denoted by $i_f(G)$, is defined to be
\[i_f(G) := e_f(1) - e_f(0). \]
The friendly index set $\text{FI}(G)$ of G is defined to be
\[\text{FI}(G) = \{ |i_f(G)| | f \text{ is a friendly labeling of } G \}. \]
In [7] Shiu-Kwong generalize the friendly index set to the full friendly index set $\text{FFI}(G)$:
\[\text{FFI}(G) = \{ |i_f(G)| | f \text{ is a friendly labeling of } G \}. \]
Friendly index of some graphs are studied in [4, 3, 5, 6]. Let $m \geq 3$ and $n \geq 2$. Denote by C_m an m-cycle and P_n an n-path. The full friendly index sets are studied in the case of a torus $C_m \times C_n$ [8,9], a cylinder $C_m \times P_n$ for $m,n \geq 4$ [10,11] and a grid $P_2 \times P_n$ [7]. In this paper we study the full friendly index sets of cylinder graphs $C_m \times P_n$ for arbitrary m and n are completely determined.
Henceforth the term “labeling” on a graph G means a vertex labeling from $V(G)$ to \mathbb{Z}_2.

2. Notation and preliminary results

We refer to [1] for general notions of graphs. Let $m \geq 3$ and $n \geq 2$. Denote by C_m an m-cycle and P_n an n-path. The Cartesian product $C_m \times P_n$ is a cylinder graph with mn vertices labeled by u_{ij} (or $u_{i,j}$), where $1 \leq i \leq m$ and $1 \leq j \leq n$. The size of $C_m \times P_n$ is $2mn - m$. Two vertices u_{ij} and u_{hk} of $C_m \times P_n$ are adjacent if either
\[i = h \text{ and } j = k \pm 1, \quad \text{or} \]
\[j = k \text{ and } i \equiv h \pm 1 \pmod{m} \]
We recall some results of the extremely friendly index of $C_m \times P_n$ in [10].

Theorem 2.1. [10] Theorem 2.4] If f is a friendly labeling of $C_m \times P_n$, then
\[i_f(C_m \times P_n) \leq \begin{cases} 2mn - m - 2n, & \text{if } m \text{ is odd;} \\ 2mn - m, & \text{if } m \text{ is even.} \end{cases} \]

Theorem 2.2. [10] Theorems 3.2–3.5] Let f be a friendly labeling of $C_m \times P_n$.

(1) Suppose n is even.
(a) If $m \leq 2n$, then $i_f(C_m \times P_n) \geq 3m - 2mn$.
(b) If $m \geq 2n$, then
\[i_f(C_m \times P_n) \geq \begin{cases} 4n + m + 2 - 2mn, & \text{if } m \text{ is odd;} \\ 4n + m - 2mn, & \text{if } m \text{ is even.} \end{cases} \]

(2) Suppose n is odd.
(a) If \(m \leq 2n - 1 \), then \(i_f(C_m \times P_n) \geq 3m + 4 - 2mn \).

(b) If \(m \geq 2n - 2 \), then

\[
i_f(C_m \times P_n) \geq \begin{cases}
4n + m + 2 - 2mn, & \text{if } m \text{ is odd}; \\
4n + m - 2mn, & \text{if } m \text{ is even}.
\end{cases}
\]

3. Non-existence of friendly indices of \(C_m \times P_n \)

In the previous section we recall the upper bound and the lower bound of the friendly index of the graph \(C_m \times P_n \). In this section we prove that some integers lying between the upper bound and the lower bound cannot be the friendly index of \(C_m \times P_n \).

We begin with some elementary observations.

Lemma 3.1. Let \(f \) be a friendly labeling of \(C_m \times P_2 = (V,E) \). Then

\[
v_f(1) \equiv m \pmod{2}.
\]

Proof. Since the degree of each of the vertices of \(C_m \times P_2 \) is 3, it follows that

\[
e_f(1) \equiv \sum_{e \in E} f^*(e) = \sum_{v \in V} \deg(v)f(v) = \sum_{v \in V} 3f(v) \equiv 3v_f(1) \equiv v_f(1) \pmod{2}.
\]

Since \(f \) is a friendly labeling, it follows that \(v_f(0) = v_f(1) = m \). Thus \(v_f(1) \equiv m \pmod{2} \). \(\square \)

Theorem 3.2. \([11], \text{Theorem 2.1}\) For even \(m \) with \(m \geq 4 \) and \(n \geq 2 \), there is no friendly labeling \(f \) of \(C_m \times P_n \) such that \(e_f(1) = 2mn - m - p \), where \(p = 1, 2, 3 \).

Let \(G \) be a graph and \(f : V \rightarrow \mathbb{Z}_2 \) a vertex labeling of \(G \). A subgraph \(H \) of \(G \) is said be to mixed with respect to \(f \) if there are two vertices \(u, v \in V(H) \) such that \(f(u) = 1 \) and \(f(v) = 0 \). An edge \(e \in E(G) \) is called an \(k \)-edge if \(f^*(e) = k \), where \(k \in \mathbb{Z}_2 \).

Clearly, mixed cycles and mixed paths contain at least two 1-edges and one 1-edge, respectively. Let \(k \in \mathbb{Z}_2 \). A cycle \(C \) is called an \(k \)-pure cycle, where \(k \in \mathbb{Z}_2 \), with respect to \(f \) if \(f(u) = k \) for all \(u \in V(C) \). We define \(k \)-pure path in a similar fashion.

A path in \(C_m \times P_n \) of the form \(u_{i_1}u_{i_2} \cdots u_{i_m} \) is called a vertical path for each fixed \(1 \leq i \leq m \). A cycle in \(C_m \times P_n \) of the form \(u_{1j}u_{2j} \cdots u_{mj}u_{1j} \) is called a horizontal cycle for each fixed \(1 \leq j \leq n \).

Lemma 3.3. \([11], \text{Lemma 2.2}\) For even \(m \), if \(C_m \times P_n \) contains a vertical mixed path under a friendly labeling \(f \), then the number of vertical mixed paths is at least two.

Lemma 3.4. \([7], \text{Corollary 5}\) Let \(f \) be a labeling of a graph \(G \) that contains a cycle \(C \) as its subgraph. If \(C \) contains a 1-edge, then the number of 1-edges in \(C \) is a positive even number.

Lemma 3.5. Let \(m \geq 6 \) be even. If \(C_m \times P_3 \) contains a horizontal pure cycle (either a 1-pure cycle or a 0-pure cycle) and a horizontal mixed cycle with respect to a friendly labeling \(f \), then \(e_f(1) \geq 8 \).
Proof. Let \(r \) be the number of horizontal 1-pure cycles and \(s \) the number of horizontal 0-pure cycles. Since \(f \) is a friendly labeling, it follows that \(0 \leq r, s \leq 1 \). There are two cases.

1. Suppose \(r = 1 \) and \(s = 0 \). Then there are two horizontal mixed cycles, each of which has at least two 1-edges. Since \(v_f(0) = \frac{3m}{2} \), there are at least \(\frac{3m}{4} \) mixed vertical paths. Thus \(e_f(1) \geq 4 + \frac{3m}{4} > 8 \). Hence \(e_f(1) \geq 9 \). The case \(r = 0 \) and \(s = 1 \) is similar.

2. Suppose \(r = 1 = s \). Then there is one horizontal mixed cycle, and all vertical paths are mixed. Thus \(e_f(1) \geq 2 + m \geq 2 + 6 = 8 \).

\(\square \)

Proposition 3.6. Let \(m \geq 6 \) be even. There is no friendly labeling \(f \) of \(C_m \times P_3 \) such that \(e_f(1) = 7 \).

Proof. Let \(a \) be the number of horizontal mixed cycles and \(b \) the number of vertical mixed paths of \(C_m \times P_3 \). Note that \(a \neq 0 \) by friendliness, and \(b \neq 1 \) by Lemma 3.3. If \(a = 1 \) or 2, then \(e_f(1) \geq 8 \) by Lemma 3.5.

Suppose \(a = 3 \). If \(b = 0 \), then by Lemma 3.4 each horizontal mixed cycle contains at least two 1-edges. Thus \(e_f(1) \geq 2 + 2 + 2 = 6 \). Note that in this case \(e_f(1) \) cannot be an odd integer by the same reason. If \(b \geq 2 \), then \(e_f(1) \geq 2 + 2 + 2 + b \geq 8 \), where the 2’s follows from the reason as above.

Combining all these cases together we conclude that \(e_f(1) \neq 7 \). \(\square \)

Lemma 3.7. [11, Lemma 2.3] Let \(n \) be even. If \(C_m \times P_n \) contains a horizontal mixed cycle with respect to a friendly labeling \(f \), then the number of horizontal mixed cycles is at least two.

Lemma 3.8. [11, Lemma 2.4] Let \(n \geq 4 \) be even and \(3 \leq m \leq 2n \). If \(C_m \times P_n \) contains a horizontal pure cycle and a horizontal mixed cycle with respect to a friendly labeling \(f \), then

\[
e_f(1) \geq \begin{cases} m + 4, & \text{if } m \text{ is odd;} \\ m + 3, & \text{if } m \text{ is even and } m = 2n; \\ m + 4, & \text{if } m \text{ is even and } m \leq 2n - 2. \end{cases}
\]

Lemma 3.9. Let \(n \geq 4 \) be even. There is no friendly labeling \(f \) of \(C_3 \times P_n \) such that \(e_f(1) = 4, 5 \).

Proof. Let \(a \) be the number of horizontal mixed cycles and \(b \) the number of vertical mixed paths. If \(b = 0 \), then all three vertical paths are pure and therefore \(|v_f(1) - v_f(0)| \geq n \geq 4 \), contradicting to the assumption that \(f \) is a friendly labeling. Thus \(b \neq 0 \). We consider the following three cases for \(a \).

1. Suppose \(a = 0 \). Then all three vertical paths are identical. Thus \(e_f(1) \) is a multiple of 3, so \(e_f(1) \neq 4, 5 \).

2. Suppose \(1 \leq a < n \). Then \(C_3 \times P_n \) contains a horizontal mixed cycles and at least one pure cycle. By Lemma 3.8 we have \(e_f(1) \geq 3 + 4 = 7 \).

3. Suppose \(a = n \). Since \(b \geq 1 \), it follows from Lemma 3.4 that \(e_f(1) \geq 2n + b \geq 8 + 1 = 9 \).

Combining all these cases together we conclude that \(e_f(1) \neq 4, 5 \). \(\square \)
4. Elementary operations on vertex labeling

In this section we prove some results that will be useful in studying the full friendly index set of $C_m \times P_n$.

Let f be a labeling of $C_m \times P_n$. An $n \times m$ matrix A_f, whose (j,i)-entry is defined by $(A_f)_{ji} = f(u_{ij})$, is called the labeling matrix of $C_m \times P_n$ under f. For convenience, we write f for A_f. Let $[a,b] = \{i \in \mathbb{Z} \mid a \leq i \leq b\}$. We denote by $O_{p,q}$ and $J_{p,q}$ the $p \times q$ zero matrix and the $p \times q$ matrix whose entries are 1 respectively.

For a given matrix A, define a row operation σ_i on A by shifting the i-th row of A to the right by 1 entry (the last entry of the i-th row shifts to the first entry). Denote by $\sigma_i(A)$ the resulting matrix.

Proposition 4.1. Consider $C_m \times P_2$ with a labeling f represented by the matrix

$$f = \begin{pmatrix} J_{2,\lfloor m/2 \rfloor} & O_{2,\lfloor m/2 \rfloor} \end{pmatrix}.$$

For $0 \leq j \leq \lfloor m/2 \rfloor$, let $f_j = \sigma_1^j(f)$, where $\sigma_1^j := \sigma_1 \circ \cdots \circ \sigma_1$. Then $e_{f_j}(1) = 4 + 2j$.

Proof. Note that f is friendly for even m but not for odd m. Note also that shifting the vertex labeling of first horizontal cycle will not change the number of 1-edges in the horizontal cycle; it will only change the number of 1-edges in the vertical paths.

Thus, there are two more 1-edges in the vertical paths. It is easy to see that $e_{f_j}(1) - e_{f_{j-1}}(1) = 2$ for each $1 \leq j \leq \lfloor m/2 \rfloor + 1$. Thus $e_{f_j}(1) = 4 + 2j$.

Proposition 4.2. Consider $C_m \times P_2$.

(1) Let f be a friendly labeling of $C_m \times P_2$ represented by

$$f_1 = \begin{pmatrix} 0 & 1 & \cdots & 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \lfloor m/2 \rfloor - 1 & \lfloor m/2 \rfloor - 1 & \cdots & \lfloor m/2 \rfloor - 1 & \lfloor m/2 \rfloor - 1 & \cdots & \lfloor m/2 \rfloor - 1 \\ \end{pmatrix}.$$

Interchange the labeling of the $2j$-th column of the above matrix for all $1 \leq j \leq k$, and denote by f_k the resulting labeling with $f_0 := f$. Then $e_f(1) = m$ and $e_{f_k}(1) = m + 4k$ for each $0 \leq k \leq \lfloor m/2 \rfloor$.

(2) Let g be a friendly labeling of $C_m \times P_2$ represented by

$$g_1 = \begin{pmatrix} 1 & \cdots & 1 & 0 & 1 \\ 0 & \cdots & 0 & 0 & 1 \\ \end{pmatrix}.$$

Interchange the labeling of the $2j$-th column of the above matrix for all $1 \leq j \leq k$, and denote by g_k the resulting labeling with $g_0 := g$. Then $e_g(1) = m + 2$ and $e_{g_k}(1) = m + 2 + 4k$ for each $0 \leq k \leq \lfloor m/2 \rfloor - 2$.
Proof. Note that interchanging the labeling of the columns will only change the number of 1-edges in the horizontal cycles and will not change the number of 1-edges of the vertical paths.

(1) It is obvious that $e_f(1) = m$. Note that f_1 is obtained by interchanging the second column of the labeling f, and the resulting matrix is

$$
\begin{pmatrix}
1 & 0 & 1 & \cdots & 1 \\
0 & 1 & 0 & \cdots & 0
\end{pmatrix}.
$$

Thus four more 1-edges are obtained from the horizontal cycles. It is easy to see that $e_{f_k}(1) - e_{f_{k-1}}(1) = 4$ for all $1 \leq k \leq \lfloor m/2 \rfloor$. Thus $e_{f_k}(1) = m + 4k$.

(2) Similar to the above proof. □

For a friendly labeling f of a graph G, we have

$$
e_f(1) - e_f(0) = 2e_f(1) - |E(G)|.
$$

To compute FFI(G), it suffices to compute the set

$$
a(G) = \{ e_f(1) \mid f \text{ is a friendly labeling of } G \}.
$$

Then FFI(G) = \{ $2i - |E(G)| \mid i \in a(G)$\}.

By substituting m by $2m$ and $2m + 1$ in Proposition 4.2 we have

Corollary 4.3. For $m \geq 2$

$$
\{2m + 2i \mid i \in [0, 2m] \setminus \{2m - 1\}\} = \{2i \mid i \in [m, 3m] \setminus \{3m - 1\}\} \subseteq a(C_{2m} \times P_2),
$$

and for $m \geq 1$

$$
\{2m + 1 + 2i \mid i \in [0, 2m]\} = \{2i + 1 \mid i \in [m, 3m]\} \subseteq a(C_{2m+1} \times P_2).
$$

The following lemma is obvious.

Lemma 4.4. Let f be a friendly labeling on $C_4 \times P_3$ represented by

$$
\begin{pmatrix}
1 & 0 & 1 & 0 \\
* & 1 & 0 & * \\
1 & 0 & 1 & 0
\end{pmatrix},
$$

where $*$ is either 1 or 0. Interchange the (1,2)-entry with (1,3)-entry of f (or the (3,2)-entry with (3,3)-entry, not both) decreases $e_f(1)$ by 4. Interchange the (1,2)-entry with (1,3)-entry and the (3,2)-entry with (3,3)-entry decreases $e_f(1)$ by 8.

Proposition 4.5. Consider the labeling $f = \left(J_{\lfloor n/2 \rfloor, 3} \atop O_{\lfloor n/2 \rfloor, 3} \right)$ on $C_3 \times P_n$. Interchange the ($\lfloor n/2 \rfloor - i + 1, 3$)-entry with the ($\lfloor n/2 \rfloor + i, 1$)-entry of f for each $1 \leq i \leq k$, where $k \leq \lfloor n/2 \rfloor - 1$, and denote by f_k the resulting labeling. Then $e_f(1) = 3$ and $e_{f_k}(1) = 3 + 4k$.
Proof. Note that f is friendly for even n but not for odd n. Note also that $e_f(1) = 3$. After interchanging the $([n/2], 3)$-entry with the $([n/2] + 1, 1)$-entry from f, we have the following matrix

$$f_1 = \begin{pmatrix} J_{[n/2]-1,3} \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ O_{[n/2]-1,3} \end{pmatrix}. $$

From the above matrix we see that $e_{f_1}(1) = 7 = 3 + 4$. After interchanging the $([n/2] - 1, 3)$-entry with the $([n/2] + 2, 1)$-entry from f_1, we have

$$f_2 = \begin{pmatrix} J_{[n/2]-2,3} \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ O_{[n/2]-2,3} \end{pmatrix}. $$

From the above matrix we see that $e_{f_2}(1) = 11 = e_{f_1}(1) + 4$. It is easy to see that $e_{f_k}(1) - e_{f_{k-1}}(1) = 4$ for each $k \leq [n/2] - 1$, and therefore $e_{f_k}(1) = 3 + 4k$. \[\Box\]

5. Realizing the full friendly index set

In this section we realize all the potential friendly indices of $C_m \times P_n$ for some n and m.

In the following we determine for $a(C_m \times P_2)$ for $m \geq 4$, $a(C_m \times P_3)$ for $m \geq 4$ and $a(C_3 \times P_n)$ for $n \geq 4$.

Theorem 5.1. For $m \geq 2$, we have

$$a(C_{2m} \times P_2) = \{2i \mid i \in [2, 3m] \setminus \{3m - 1\}\}. $$

Proof. Let ϕ be any friendly labeling of $C_{2m} \times P_2$. By Theorem 2.1 and (1)(b) of Theorem 2.2 we have

$$6m \geq i_{\phi}(C_{2m} \times P_2) \geq 8 - 6m. $$

On the other hand, we have

$$i_{\phi}(C_{2m} \times P_2) = 2e_{\phi}(1) - |E(C_{2m} \times P_2)| = 2e_{\phi}(1) - 6m. $$

It follows that $6m \geq e_{\phi}(1) \geq 4$.

Let f be the labeling of $C_{2m} \times P_2$ of Proposition 4.1. Note that f is friendly. By Proposition 4.1 we have $\{2i \mid i \in [2, m + 2]\} \subseteq a(C_{2m} \times P_2)$. The result follows from Corollary 4.3. \[\Box\]

Theorem 5.2. For $m \geq 2$, we have

$$a(C_{2m+1} \times P_2) = \{2i + 1 \mid i \in [2, 3m]\}. $$
Proof. Let \(\phi \) be any friendly labeling of \(C_{2m+1} \times P_2 \). By Theorem 2.1 and (1)(b) of Theorem 2.2 we have

\[
6m - 1 \geq i_\phi(C_{2m} \times P_2) \geq 7 - 6m.
\]

It follows that \(6m + 1 \geq e_\phi(1) \geq 5. \)

Let \(f \) be a labeling on \(C_{2m+1} \times P_2 \) represented by the matrix

\[
\begin{pmatrix}
J_{2,m} & 0 \\
0 & O_{2,m}
\end{pmatrix}.
\]

Note that \(f \) is a friendly labeling of \(C_{2m+1} \times P_2 \) and \(e_f(1) = 5 + 2j \) for \(0 \leq j \leq m \). Thus \(\{2i + 1 \mid i \in [2, m + 2]\} \subseteq a(C_{2m+1} \times P_2) \).

The result follows from Corollary 4.3. \(\square \)

Theorem 5.3. For \(m \geq 3 \), we have

\[
a(C_{2m} \times P_3) = \{6, 10m\} \cup \{8, 10m - 4\}.
\]

Proof. Let \(\phi \) be any friendly labeling of \(C_{2m} \times P_3 \). By Theorem 2.1 and (2)(b) of Theorem 2.2 we have

\[
10m \geq i_\phi(C_{2m} \times P_3) \geq 12 - 10m.
\]

That means \(10m \geq e_\phi(1) \geq 6. \) By Theorem 3.2, \(e_\phi(1) \notin \{10m - 1, 10m - 2, 10m - 3\} \).

Let \(f \) be a labeling on \(C_{2m} \times P_3 \) represented by the matrix \((J_{3,m} \ O_{3,m}) \). Note that \(f \) is a friendly labeling of \(C_{2m} \times P_2 \) and \(e_f(1) = 6. \) Let \(f_j = \sigma_3^j(f) \) for \(0 \leq j \leq m \). Similar to the proof of Proposition 4.1 we have \(e_f(1) = 6 + 2j \) for \(0 \leq j \leq m \). Thus \(\{2i \mid i \in [3, m + 3]\} \subseteq a(C_{2m} \times P_3) \).

The matrix representing \(f_m \) is given by

\[
\begin{pmatrix}
J_{2,m} & O_{2,m} \\
O_{1,m} & J_{1,m}
\end{pmatrix}.
\]

Consider \(\sigma_3^j(f_m) \) for \(0 \leq j \leq m \). Similar to the proof of Proposition 4.1 we see that \(\{2i \mid i \in [m + 3, 2m + 3]\} \subseteq a(C_{2m} \times P_3) \).

Consider another labeling \(g \) of \(C_{2m} \times P_3 \) represented by the matrix

\[
\begin{pmatrix}
J_{3,m-1} & 1 & 1 \\
0 & 0 & 0 \\
1 & 0 & O_{3,m-1}
\end{pmatrix}.
\]

Note that \(g \) is a friendly labeling and \(e_g(1) = 9 \). Consider \(\sigma_3^j(g) \) for \(0 \leq j \leq m - 1 \). Similar to the proof of Proposition 4.1 we have \(\{2i + 1 \mid i \in [4, m + 3]\} \subseteq a(C_{2m} \times P_3) \). Let \(\bar{g} = \sigma_1^{m-1}(g) \). Consider \(\sigma_3^j(\bar{g}) \) for \(0 \leq j \leq m - 1 \). Similarly we have \(\{2i + 1 \mid i \in [m + 3, 2m + 2]\} \subseteq a(C_{2m} \times P_3) \).

Combining the above cases, we have \(\{6\} \cup \{8, 4m + 6\} \subseteq a(C_{2m} \times P_3) \).
By Theorem 2.1 we have \(e_\phi(1) \leq 10m \) for any friendly labeling \(\phi \). Let \(h \) be a labeling of \(C_{2m} \times P_3 \) whose matrix representation is given by

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & \cdots & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0
\end{pmatrix}.
\]

Then \(h \) is a friendly labeling and \(e_h(1) = 10m \).

Case 1: Suppose \(m = 2k \) for some \(k \geq 2 \). Then we can subdivide the above matrix into \(k \) submatrices (blocks) of size \(3 \times 4 \) starting from the first column. Apply the procedure in Lemma 4.4 to the first row and the third row in each of these blocks consecutively, we see that \(\{ 4i \mid i \in [3k, 5k] \} \subseteq a(C_{2m} \times P_3) \).

Consider the labelings \(p, q \) and \(r \) whose matrix representations are of the form

\[
p = \begin{pmatrix}
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & \cdots & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0
\end{pmatrix},
q = \begin{pmatrix}
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & \cdots & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{pmatrix},
r = \begin{pmatrix}
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & \cdots & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0
\end{pmatrix}.
\]

Note that \(p, q \) and \(r \) are friendly labelings of \(C_{2m} \times P_3 \) and \(e_p(1) = 20k - 5 \), \(e_q(1) = 20k - 6 \) and \(e_r(1) = 20k - 7 \). By applying the procedure of Lemma 4.4 to the first \(k - 1 \) blocks of all these matrices consecutively, we see that \(\{ 4i + 3 \mid i \in [3k, 5k - 2] \} \), \(\{ 4i + 2 \mid i \in [3k, 5k - 2] \} \) and \(\{ 4i + 1 \mid i \in [3k, 5k - 2] \} \) are subsets of \(a(C_{2m} \times P_3) \).

Combining the above four cases, we have \([6m, 10m - 4] \cup \{10m \} \subseteq a(C_{2m} \times P_3)\).

Let \(s \) be a friendly labeling of \(C_{2m} \times P_3 \) whose matrix representation is given by

\[
s = \begin{pmatrix}
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & \cdots & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & \cdots & 0 & 1 & 1 & 0
\end{pmatrix}.
\]

Note that \(e_s(1) = 6m \). By applying a similar procedure in Lemma 4.4 to the first row of each block of \(s \) consecutively, we see that \(\{ 4i \mid i \in [2k, 3k] \} \subseteq a(C_{2m} \times P_3) \).
Consider the labelings \(t, u \) and \(v \) of \(C_{2m} \times P_3 \) whose matrix representations are given by

\[
\begin{align*}
t &= \begin{pmatrix}
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & \cdots & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & \cdots & 0 & 1 & 1 & 0
\end{pmatrix}, \\
u &= \begin{pmatrix}
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & \cdots & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & \cdots & 0 & 1 & 1 & 0
\end{pmatrix}, \\
v &= \begin{pmatrix}
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & \cdots & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & \cdots & 0 & 1 & 1 & 0
\end{pmatrix}.
\end{align*}
\]

Note that \(t, u \) and \(v \) are friendly labelings of \(C_{2m} \times P_3 \) and \(e_t(1) = 6m + 2 \), \(e_u(1) = 6m + 1 \) and \(e_v(1) = 6m - 1 \). By applying a similar procedure of Lemma 4.4 to the first row of each boxed block of these matrices, we see that \(\{4i+2 \mid i \in [2k+1, 3k]\} \), \(\{4i+1 \mid i \in [2k+1, 3k]\} \) and \(\{4i+3 \mid i \in [2k, 3k-1]\} \) are subsets of \(a(C_{2m} \times P_3) \).

Combining the above four cases, we have \([4m+3, 6m+2] \subseteq a(C_{2m} \times P_3) \). The theorem holds for even \(m \) by considering all the above cases.

Case 2: Suppose \(m = 2k + 1 \) for some \(k \geq 1 \). We shall keep the labelings \(h, p, q, r, s, t, u \) and \(v \) for \(m = 2k \). Let

\[
A = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
1 & 0
\end{pmatrix}, \quad B = \begin{pmatrix}
1 & 0 \\
1 & 0
\end{pmatrix}.
\]

We construct a labeling \(\overline{h} \) similar to \(h \) in Case 1 by inserting the sub-matrix \(A \) into \(h \) as the last two columns. Then \(e_{\overline{h}}(1) = 20k + 10 = 10m \). Similar to Case 1 (i.e., apply the procedure in Lemma 4.4 to the first \(k \) blocks consecutively), we have \(\{4i + 10 \mid i \in [3k, 5k]\} \).

Construct labelings \(p, q \) and \(r \) by inserting the sub-matrix \(A \) into \(p, q \) and \(r \) between the last fifth and the last fourth column, respectively. Then \(e_p(1) = 20k + 5 \), \(e_q(1) = 20k + 4 \) and \(e_r(1) = 20k + 3 \). Similar to Case 1, after combining the above four cases, we have \([6m + 4, 10m - 4] \cup \{10m\} \subseteq a(C_{2m} \times P_3) \). Denote by \(\overline{p}_{k-1} \) the labeling after the procedure in Lemma 4.4 is applied \(k-1 \) times. Then \(e_{\overline{p}_{k-1}}(1) = 20k + 5 - 8(k - 1) = 12k + 13 \). By swapping the entries of the first row of \(A \) in \(\overline{p}_{k-1} \), we see that \(e(1) = 12k + 9 = 6m + 3 \).

Similarly, let \(\overline{r} \) be obtained from \(s \) by inserting the sub-matrix \(B \) as the last two columns. We also construct labelings \(\overline{t}, \overline{u} \) and \(\overline{v} \) by inserting the sub-matrix \(B \) into \(t, u \) and \(v \) between the last fifth and last the fourth column, respectively. Then \(e_{\overline{t}}(1) = 12k + 6 \), \(e_{\overline{u}}(1) = 12k + 8 \), \(e_{\overline{v}}(1) = 12k + 7 \) and \(e_{\overline{r}}(1) = 12k + 5 \). Similar to Case 1, we will obtain \(\{4m+5\} \cup [4m+7, 6m+2] \subseteq a(C_{2m} \times P_3) \). Note that \(4m+6 \) is covered before defining the labeling \(h \).

The theorem now holds for odd \(m \). □
Theorem 5.4. For \(m \geq 2 \), we have

\[a(C_{2m+1} \times P_3) = [7, 10m + 2]. \]

Proof. For \(m = 2k \), let \(f_j \) be the labelings of \(C_{2m} \times P_3 \) defined in the proof of Theorem 5.3, \(0 \leq j \leq m \).

Let \(\tilde{f}_j \) be the labeling obtained from \(f_j \) by inserting the sub-matrix \(A = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \) as the last column.

Note that \(\tilde{f}_j \) is friendly. Similar to the proof of Theorem 5.3 we have \(\{7 + 2i \mid 0 \leq i \leq 2m\} \setminus \{9\} \subseteq a(C_{2m+1} \times P_3) \). If we replace the sub-matrix \(A \) in \(\tilde{f}_j \) by \(B = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \), then it is easy to see that \(\{8 + 2i \mid 0 \leq i \leq 2m\} \subseteq a(C_{2m+1} \times P_3) \). On the other hand, it is easy to see that \(e_{\sigma_1(\mathcal{I}_0)}(1) = 9 \).

Consider the labeling \(h \) represented by the following matrix

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & \cdots & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 1
\end{pmatrix}
\]

Note that \(h \) is a friendly labeling of \(C_{2m+1} \times P_3 \) and \(e_h(1) = 10m + 2 \). Apply the procedure in Lemma 4.4 to the first row and the third row in each of first \(k \) blocks consecutively, we see that \(\{10m + 2 - 4i \mid 0 \leq i \leq 2k\} \subseteq a(C_{2m+1} \times P_3) \). Consider the labelings \(p, q \) and \(r \) represented by the matrices

\[
p = \begin{pmatrix}
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & \cdots & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 1
\end{pmatrix},
\]

\[
q = \begin{pmatrix}
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & \cdots & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 1
\end{pmatrix},
\]

\[
r = \begin{pmatrix}
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & \cdots & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 1
\end{pmatrix}.
\]

They are friendly and \(e_p(1) = 10m + 1 \), \(e_q(1) = 10m \), and \(e_r(1) = 10m - 1 \). Similarly, apply the procedure in Lemma 4.4 to \(p, q \) and \(r \) we see that \(\{10m + 1 - 4i \mid 0 \leq i \leq 2k\} \) and \(\{10m - 4i \mid 0 \leq i \leq 2k\} \) and \(\{10m - 1 - 4i \mid 0 \leq i \leq 2k\} \) are subsets of \(a(C_{2m+1} \times P_3) \). Combining these four cases we see that \([6m - 1, 10m + 2] \subseteq a(C_{2m+1} \times P_3) \).
Consider the labelings
\[
\begin{pmatrix}
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & \cdots & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & \cdots & 0 & 1 & 1 & 0 & 1 \\
\end{pmatrix},
\]
\[
\begin{pmatrix}
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & \cdots & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & \cdots & 0 & 1 & 1 & 0 & 1 \\
\end{pmatrix},
\]
\[
\begin{pmatrix}
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & \cdots & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & \cdots & 0 & 1 & 1 & 0 & 0 \\
\end{pmatrix},
\]
\[
\begin{pmatrix}
1 & 0 & 1 & 0 & \cdots & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & \cdots & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & \cdots & 0 & 1 & 1 & 0 & 0 \\
\end{pmatrix}.
\]

These are friendly labelings and \(e_t(1) = 6m + 4\), \(e_u(1) = 6m + 3\), \(e_v(1) = 6m + 2\) and \(e_w(1) = 6m + 1\).

Similar to the proof of Case 1 of Theorem 5.3, we see that \([4m + 1, 6m + 4] \subseteq a(C_{2m+1} \times P_3)\).

By considering all the above cases, the theorem holds when \(m\) is even. When \(m\) is odd, one can prove the theorem similar to the proof of Case 2 of Theorem 5.3. Thus the theorem holds for all \(m \geq 2\). □

Theorem 5.5. For \(n \geq 3\), we have
\[a(C_3 \times P_{2n}) = \{3\} \cup [6, 10n - 3].\]

Proof. Let \(\varphi\) be any friendly labeling of \(C_3 \times P_{2n}\). By Lemma 3.9, Theorem 2.1 and (1)(a) of Theorem 2.2 we have \(10n - 3 \geq e_\varphi(1) \geq 3\) and \(e_\varphi(1) \neq 4, 5\).

Obviously, \(q = \begin{pmatrix} O_{1,3} \\ J_{n,3} \\ O_{n-1,3} \end{pmatrix}\) is a friendly labeling of \(C_3 \times P_{2n}\) and \(e_q(1) = 6\).

Let \(f\) be the labeling of \(C_3 \times P_{2n}\) in Proposition 4.5. It is a friendly labeling and \(e_f(1) = 3\). By applying the procedure in Proposition 4.5 to \(f\) we see that \(\{4k + 3 \mid k \in [0, n - 1]\} \subseteq a(C_3 \times P_{2n})\).

Consider the labelings \(g, h\) and \(\ell\) of \(C_3 \times P_{2n}\) represented by the matrices
\[
g = \begin{pmatrix} 1 & 1 & 0 \\ J_{n-1,3} \\ 1 & 0 & 0 \\ O_{n-1,3} \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ J_{n-2,3} \\ 1 & 0 & 0 \\ O_{n-1,3} \end{pmatrix}, \quad \ell = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ J_{n-2,3} \\ 1 & 1 & 0 \\ O_{n-1,3} \end{pmatrix}.
\]
Note that g, h and ℓ are friendly and $e_g(1) = 8$, $e_h(1) = 9$ and $e_\ell(1) = 10$ respectively. For the labelings g and h, interchange the $(n - i + 1, 3)$-entry with the $(n + i, 3)$-entry for $1 \leq i \leq k$ if $n \geq 4$, where $k \leq n - 3$. The resulting labelings are denoted by g_k and h_k, respectively.

For the labeling g, we have

$$\{8 + 4k \mid 0 \leq k \leq n - 3\} \subseteq a(C_3 \times P_{2n}).$$

Extend the above procedure to the labeling g to $k = n - 2$ and $k = n - 1$. It is easy to see that $e_{g_{n-2}}(1) = 8 + 4(n - 2) = 4n$ and $e_{g_{n-1}}(1) = 8 + 4(n - 2) + 2 = 4n + 2$. Thus

$$\{8 + 4k \mid 0 \leq k \leq n - 2\} \cup \{4n + 2\} \subseteq a(C_3 \times P_{2n}).$$

For the labeling h, we have

$$\{9 + 4k \mid 0 \leq k \leq n - 3\} \subseteq a(C_3 \times P_{2n}).$$

For the labeling ℓ, first interchange the $(n, 3)$-entry with the $(n + 2, 1)$-entry, and then interchange the $(n + 1 - i, 3)$-entry with the $(n + i, 3)$-entry consecutively, for $2 \leq i \leq n - 3$ if $n \geq 5$. Then we see that

$$\{10 + 4i \mid 0 \leq i \leq n - 3\} \subseteq a(C_3 \times P_{2n}).$$

Combining all the above cases, we see that $\{3\} \cup [6, 4n] \cup \{4n + 2\} \subseteq a(C_3 \times P_{2n}).$

The matrix representing the labeling f_{n-1} is given by

$$\begin{pmatrix} J_{1,3} \\ A \\ B \\ O_{1,3} \end{pmatrix},$$

where $A = \begin{pmatrix} J_{n-1,2} & O_{n-1,1} \end{pmatrix}$ and $B = \begin{pmatrix} J_{n-1,1} & O_{n-1,2} \end{pmatrix}$.

For $2 \leq k \leq n - 1$ and $n + 1 \leq k \leq 2n - 2$, shift consecutively the k-th row to the right by one unit if k is even, and to the left by one unit if k odd. Applying this procedure we get

$$\{2i - 1 \mid i \in [2n, 4n - 4]\} \subseteq a(C_3 \times P_{2n}) \text{ when } n \text{ is odd;}$$

$$\{2i - 1 \mid i \in [2n, 4n - 3]\} \setminus \{6n - 3\} \subseteq a(C_3 \times P_{2n}) \text{ when } n \text{ is even.}$$

To realize the value $6n - 3$ for even n, we make a special labeling as follows. Apply the above procedure up to shifting the $(n - 1)$-th row, and then shift the $(n + 1)$-th row to the right by 1 unit.

The matrix representing the labeling g_{n-1} is given by

$$g_{n-1} = \begin{pmatrix} A \\ 1 & 0 & 1 \\ B \\ 0 & 0 & 0 \end{pmatrix},$$

where $A = \begin{pmatrix} J_{n,2} & O_{n,1} \end{pmatrix}$, $B = \begin{pmatrix} O_{n-2,2} & J_{n-2,1} \end{pmatrix}$.

For $1 \leq k \leq n - 1$, shift consecutively the k-th row to the right by 1 unit if k is odd, and to the left by 1 unit if k is even. It is easy to see that each operation increases $e(1)$ by 2. After these procedures, if $n \geq 5$, then we interchange the $(n + 2, 3)$-entry with the $(n + 3, 2)$-entry, the $(n + 3, 3)$-entry with the
(n + 4, 1)-entry, the (n + 4, 3)-entry with the (n + 5, 2)-entry, the (n + 5, 3)-entry with the (n + 6, 1)-entry, etc., up to interchanging the entry in the (2n − 3)-th row with the entry in the (2n − 2)-th row. Again, it is easy to see that each interchange increases e(1) by 2. Thus

\[\{4n + 2 + 2k \mid 1 \leq k \leq 2n - 5\} \subseteq a(C_3 \times P_{2n}). \]

Let \(p \) be the labeling whose matrix representation is given by

\[
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
& \ddots \\
1 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}.
\]

For \(1 \leq k \leq n + 2 \), shift consecutively the \(k \)-th row to the right by 1 unit if \(k \) is odd, and to the left by 1 unit if \(k \) is even. It is easy to see that each shift decreases \(e(1) \) by 2. The resulting labeling is denoted by \(p_k \) and let \(p_0 = p \). Thus

\[\{10n - 3 - 2k \mid 0 \leq k \leq n + 2\} \subseteq a(C_3 \times P_{2n}). \]

By swapping the \((2n - 1, 3)\)-entry and \((2n, 3)\)-entry of \(p_k \) for \(0 \leq k \leq n + 2 \), it decreases \(e(1) \) by 1. So we get

\[\{10n - 4 - 2k \mid 0 \leq k \leq n + 2\} \subseteq a(C_3 \times P_{2n}). \]

The theorem follows from considering all the above cases. \(\Box \)

Theorem 5.6. For \(n \geq 2 \), \(a(C_3 \times P_{2n+1}) = [5, 10n + 2] \).

Proof. By Theorem 2.1 and (2) of Theorem 2.2 we have \(10n + 2 > e_\phi(1) \geq 5 \) for any friendly labeling \(\phi \) of \(C_3 \times P_{2n+1} \).

Let \(f = \begin{pmatrix} J_{n,3} & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \). Then \(f \) is friendly and \(e_f(1) = 5 \). Interchanging the \((n - i + 1, 3)\)-entry with the \((n + i + 1, 1)\)-entry for \(1 \leq i \leq k \) for each \(k \) \((1 \leq k \leq n - 1) \). The resulting labeling is denoted by \(f_k \). We see that \(\{4k + 1 \mid k \in [1, n]\} \subseteq a(C_3 \times P_{2n+1}) \).

Let \(g, h \) and \(\ell \) be labelings of \(C_3 \times P_{2n+1} \) whose matrix representations are given by

\[
g = \begin{pmatrix} 1 & 1 & 0 \\ J_{n,3} & 1 & 0 \\ O_{n,3} \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ J_{n-1,3} & 1 & 0 \\ O_{n,3} \end{pmatrix}, \quad \ell = \begin{pmatrix} 1 & 1 & 0 \\ J_{n-1,3} & 1 & 0 \\ O_{n,3} \end{pmatrix}.
\]
Note that g, h and ℓ are friendly, and $e_g(1) = 6$, $e_h(1) = 7$ and $e_\ell(1) = 8$. For the labeling g, interchange the $(k,3)$-entry with the $(n+k,3)$-entry consecutively for $2 \leq k \leq n$. The resulting labeling is denoted by g_k. It is easy to see that each interchange increases $e(1)$ by 4. Thus

$$\{6 + 4k \mid 0 \leq k \leq n - 1\} \subseteq a(C_3 \times P_{2n+1}).$$

For the labelings h and ℓ, interchange the $(k,3)$-entry with the $(n-1+k,3)$-entry consecutively for $3 \leq k \leq n$ if $n \geq 3$. It is easy to see that each interchange increases $e(1)$ by 4. Thus

$$\{7 + 4k \mid 0 \leq k \leq n - 2\} \subseteq a(C_3 \times P_{2n+1}).$$

$$\{8 + 4k \mid 0 \leq k \leq n - 2\} \subseteq a(C_3 \times P_{2n+1}).$$

Combining the above results, we have $[5, 4n + 2] \subseteq a(C_3 \times P_{2n+1})$.

Consider

$$f_n = \begin{pmatrix} J_{1,3} \\ A \\ B \\ O_{1,3} \end{pmatrix}, \text{ where } A = \begin{pmatrix} J_{n-1,2} & O_{n-1,1} \end{pmatrix}, B = \begin{pmatrix} J_{n,1} & O_{n,2} \end{pmatrix}. $$

For $k \in [2, 2n - 1] \setminus \{n\}$, shift consecutively the k-th row to the left by 1 unit if k is odd, and to the right by 1 unit if k is even. Applying this procedure we get

$$\{4n + 1 + 2i \mid i \in [0, 2n - 3]\} \subseteq a(C_3 \times P_{2n+1}) \text{ when } n \text{ is odd;}$$

$$\{4n + 1 + 2i \mid i \in [0, 2n - 2]\} \setminus \{6n - 1\} \subseteq a(C_3 \times P_{2n+1}) \text{ when } n \text{ is even.}$$

To realize the value $6n - 1$ for even n, we make a special labeling as follows. Apply the above procedure up to shifting the $(n-1)$-th row, and then shift the n-th row to the right by 1 unit.

Consider the labeling

$$g_n = \begin{pmatrix} A \\ B \end{pmatrix}, \text{ where } A = \begin{pmatrix} J_{n,2} & O_{n,1} \end{pmatrix}, B = \begin{pmatrix} J_{1,3} \\ O_{n-1,2} & J_{n-1,2} \\ O_{1,3} \end{pmatrix}. $$

For $1 \leq k \leq 2n - 1$, shift consecutively the k-th row to the right by 1 unit if k is odd, and to the left by 1 unit if k is even. It is easy to see that each shift increases $e(1)$ by 2, except shifting the n-th row and the $(n+1)$-th row which preserve $e(1)$. Thus

$$\{4n + 2 + 2i \mid i \in [0, 2n - 3]\} \subseteq a(C_3 \times P_{2n+1}).$$
Let p be the labeling whose matrix representation is given by
\[
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\vdots \\
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{pmatrix}.
\]

Similar to the procedure for the matrix p in Theorem 5.5, we have
\[
[8n - 3, 10n + 2] \subseteq a(C_3 \times P_{2n+1}).
\]

The theorem follows from considering all the above cases. □

By constructing labelings directly, it is easy to obtain that $a(C_4 \times P_3) = [6, 16] \cup \{20\}$, $a(C_3 \times P_2) = \{3, 5, 7\}$, $a(C_3 \times P_3) = [5, 12]$ and $a(C_3 \times P_4) = \{3\} \cup [6, 17]$.

We summarize the full friendly index sets of cylinder graphs $C_m \times P_n$ for $m \geq 3$, $C_m \times P_3$ for $m \geq 3$, and $C_3 \times P_n$ for $n \geq 4$, as follows.

Theorem 5.7. The full friendly index set of $C_m \times P_n$ is given by
\[
\begin{align*}
\text{FFI}(C_m \times P_2) &= \{4i - 3m \mid i \in [2, 3m/2 - 2] \cup \{3m/2\}\} \text{ if } m \geq 4 \text{ is even.} \\
\text{FFI}(C_m \times P_2) &= \{4i - 3m + 2 \mid i \in [2, (3m - 1)/2]\} \text{ if } m \geq 5 \text{ is odd.} \\
\text{FFI}(C_m \times P_3) &= \{2i - 5m \mid i \in \{6, 5m\} \cup [8, 5m - 3]\} \text{ if } m \geq 6 \text{ is even.} \\
\text{FFI}(C_m \times P_3) &= \{2i - 5m \mid i \in [7, 5m - 2]\} \text{ if } m \geq 5 \text{ is odd.} \\
\text{FFI}(C_3 \times P_n) &= \{2i - 10n - 3 \mid i \in \{3\} \cup [6, 5n - 3]\} \text{ if } n \geq 4 \text{ is even.} \\
\text{FFI}(C_3 \times P_n) &= \{2i - 10n - 3 \mid i \in [5, 5n + 2]\} \text{ if } n \geq 5 \text{ is odd.} \\
\text{FFI}(C_3 \times P_2) &= \{-3, 1, 5\}. \\
\text{FFI}(C_3 \times P_3) &= \{2i - 15 \mid i \in [5, 12]\}. \\
\text{FFI}(C_4 \times P_3) &= \{2i - 20 \mid i \in [6, 16] \cup \{20\}\}.
\end{align*}
\]

Together with [10, 11] (the results are listed as follows), the full friendly index set of $C_m \times P_n$, for all m and n, are completely determined.
For \(m, n \geq 4 \), \(\text{FFI}(C_m \times P_n) \) is given by

\[
\begin{align*}
\{ -2mn + m + 2i \mid i \in [2n+2, 2mn-m-4] \cup \{2n, 2mn-m\} \} \\
\text{for } m \geq 2n+2 \text{ and } m, n \text{ are even;}
\{ -2mn + m + 2i \mid i \in [m+4, 2mn-m-4] \cup \{m+2, 2mn-m\} \} \\
\text{for } m \leq 2n-2, \text{ m is even and } n \text{ is odd;}
\{ -2mn + m + 2i \mid i \in [2n+2, 2mn-m-4] \cup \{2n, 2mn-m\} \} \\
\text{for } m \geq 2n \text{ and } m \text{ is even and } n \text{ is odd;}
\{ -2mn + m + 2i \mid i \in [m+4, 2mn-m-n] \cup \{m\} \} \\
\text{for } m \leq 2n-3, \text{ m is odd and } n \text{ is even;}
\{ -2mn + m + 2i \mid i \in [m+2, 2mn-m-n] \cup \{m\} \} \\
\text{for } m = 2n-1 \text{ and } n \text{ is even;}
\{ -2mn + m + 2i \mid i \in [2n, 2mn-m-n] \} \\
\text{for } m \geq 2n+1 \text{ and } m \text{ is odd and } n \text{ is even;}
\{ -2mn + m + 2i \mid i \in [m+4, 2mn-m-n] \cup \{m+2\} \} \\
\text{for } m \leq 2n-3 \text{ and } m, n \text{ are odd;}
\{ -2mn + m + 2i \mid i \in [2n+1, 2mn-m-n] \} \\
\text{for } m \geq 2n-1 \text{ and } m, n \text{ are odd.}
\end{align*}
\]

Acknowledgments

This work is supported by Faculty Research Grant, Hong Kong Baptist University.

References

Wai Chee Shiu
Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, China
Email: wcshiu@hkbu.edu.hk

Man-Ho Ho
Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, China
Email: homanho@math.hkbu.edu.hk