The time of completion of a linear birth-growth model

S. N. Chiu
Hong Kong Baptist University, snchiu@hkbu.edu.hk

Follow this and additional works at: https://repository.hkbu.edu.hk/hkbu_staff_publication

Part of the Mathematics Commons

This document is the authors' final version of the published article.
Link to published article: https://doi.org/10.1017/S0001867800010156

APA Citation

This Journal Article is brought to you for free and open access by HKBU Institutional Repository. It has been accepted for inclusion in HKBU Staff Publication by an authorized administrator of HKBU Institutional Repository. For more information, please contact repository@hkbu.edu.hk.
THE TIME OF COMPLETION OF A LINEAR

BIRTH-GROWTH MODEL

S.N. CHIU,* Hong Kong Baptist University

C.C. YIN,* Hong Kong Baptist University and Qufu Normal University

Abstract

Consider the following birth-growth model in \mathbb{R}. Seeds are born randomly according to an inhomogeneous space-time Poisson process. A newly formed point immediately initiates a bi-directional coverage by sending out a growing branch. Each frontier of a branch moves at a constant speed until it meets an opposing one. New seeds continue to form on the uncovered parts on the line. We are interested in the time until a bounded interval is completely covered. The exact and limiting distributions as the length of interval tends to infinity are obtained for this completion time by considering a related Markov process. Moreover, some strong limit results are also established.

Keywords: Completion time; coverage; inhomogeneous Poisson process; Johnson-Mehl model; linear birth-growth model; Markov process; strong limit theorem

AMS 1991 Subject Classification: Primary 60G55, 60J25

Secondary 60F05, 60F15, 60D05

1. Introduction

Consider the following linear random birth-growth model. Points arrive indepen-
dently on a line at random positions and times according to a space-time Poisson pro-
cess \(\Phi \equiv \{(x_i, t_i) \in \mathbb{R} \times [0, \infty)\} \) with intensity measure \(dx \lambda(t) dt \). The first arrived
point \((x_1, t_1)\) immediately initiates a bi-directional coverage by sending out a growing
branch centered at \(x_1 \). Each frontier of the branch moves with a constant speed \(v \)
until it meets an opposing one. Other points continue to arrive according to \(\Phi \). If a
point arrives at a position that has already been covered by a branch, it will be deleted
(or thinned); otherwise, another bi-directional coverage will be initiated by the same
mechanism as that initiated by the first point. Applications of such processes can be
found in cell biology (Wolk [13]), molecular biology (Vanderbei and Shepp [12]; Cowan
et al. [4]) and neurobiology (Quine and Robinson [10, 11]) as well as other more ob-
vious areas such as crystal growth (Kolmogorov [8]; Johnson and Mehl [7]; Meijering
[9]). The distributions of random variables such as the number of unthinned points and
the time required to cover an interval of a given length have been studied under various
assumptions on the arrival regime. Quine and Robinson [10], Holst et al. [6], Chiu [2]
and Chiu and Quine [3] showed the asymptotic normality of the number of unthinned
points. Chiu [1] and Erhardsson [5] proved that the number of uncovered components
has an asymptotic Poisson distribution. Vanderbei and Shepp [12] and Cowan et al.
[4] studied the limiting distributions, by different means, of the completion time of the
birth-growth model with \(\lambda(x) = \lambda \) and \(\lambda(x) = \frac{\gamma}{\mu} e^{-\frac{x}{\mu}} \), respectively, where \(\lambda, \gamma \) and \(\mu \)
are positive finite constants. Weak limit theorems have also been proved. The general
model considered by Holst et al. [6] incorporates both these models as special cases.
For limit theorems of the completion time in higher dimensional cases see Chiu [1]. The
current paper deals with the linear birth-growth model. We use the Markov process approach suggested by Vanderbei and Shepp [12] (see also Erhardsson [5] and Holst et al. [6]) to establish, under more general conditions than Holst et al. [6], the exact and limiting distributions and strong limit theorems for the time of complete coverage of a sufficiently long interval.

2. Laplace transform of the completion time

Assume that the space-time Poisson process \(\Phi \) with intensity measure \(dx \lambda(t)dt \) is defined in the probability space \((\Omega, \mathcal{F}, P) \), and \(\lambda(\cdot) \) is integrable and such that for all \(t > 0 \),

\[
0 < \Lambda(t) := \int_0^t \lambda(y)dy < \infty.
\]

Because the process is homogeneous in space, the growth velocity \(v \) of the seed can be taken as \(\frac{1}{2} \) by a change of scale. After a shear transformation \((x, t) \rightarrow (x + \frac{t}{2}, t) \), a stationary Markov process \(\{\xi_x, -\infty < x < \infty\} \) with the filtration \(\{\mathcal{F}_x, -\infty < x < \infty\} \) is obtained, where \(\mathcal{F}_x \) is the \(\sigma \)-algebra generated by the points \(\{(x_i, t_i) \in \Phi : -\infty < x_i \leq x\} \) (for details see Holst et al. [6]). Denote by \(T_L \) the lowest time level at which the interval \((0, L) \) is completely covered and by \(\tau_z \) the value of \(x \) at which the process \(\{\xi_x\} \) first hits the level \(z \) (note that the level of \(\{\xi_x\} \) is the time and the parameter space is the positions). Then for \(t < z \),

\[
P_t(T_L < z) = P_t(\tau_z > L),
\]

where \(P_t \) denotes the conditional probability given that the initial level is \(\xi_0 = t \).

It is known that the Laplace transform of \(\tau_z \) can be obtained by considering the
transition semigroup of operators \(\{ T_x \} \) defined by
\[
T_x f(t) := \mathbb{E}_t f(\xi_x) = \left(1 - \int_0^x \Lambda(t + u) \, du \right) f(t + x) + \left(\int_0^x \Lambda(t + u) \, du \right) \int_0^t f(u) \frac{\lambda(u)}{\Lambda(t)} \, du + o(x)
\]
\[
= (1 - x\Lambda(t + \delta_x)) f(t + x) + x\Lambda(t + \delta_x) \int_0^t f(u) \frac{\lambda(u)}{\Lambda(t)} \, du + o(x),
\]
for some \(\delta_x \) in \((0, x)\), where \(\mathbb{E}_t \) denotes the conditional expectation given \(\xi_0 = t \) and \(f \) is a bounded measurable real-valued function on \([0, \infty)\). Thus, the infinitesimal generator \(\mathcal{A} \) is given by
\[
\mathcal{A} f(t) = f'(t) - \Lambda(t) f(t) + \int_0^t f(u) \frac{\lambda(u)}{\Lambda(t)} \, du.
\]
The Laplace transform \(f(t) = \mathbb{E}_t e^{-\alpha \tau_x} \) is the solution of
\[
\begin{cases}
\mathcal{A} f(t) = \alpha f(t), & 0 < t < z, \\
f(z) = 1.
\end{cases}
\] (2.1)

Holst et al. [6, p. 908] derived the same system of equations by a regenerative argument and obtained explicitly the Laplace transform
\[
\mathbb{E}_t e^{-\alpha \tau_x} = \frac{1 + \alpha \int_0^t e^{\alpha u + \Delta(u)} \, du}{1 + \alpha \int_0^z e^{\alpha u + \Delta(u)} \, du},
\]
where \(\Delta(u) = \int_0^u \Lambda(t) \, dt \).

In principle the inverse Laplace transform can always be found, but it is in the form of a Bromwich integral. Even for the simplest case in which \(\lambda(t) = \lambda \), the Bromwich integral is difficult to calculate (see Vanderbei and Shepp [12, p. 308]). Only limit theorems have been derived in Holst et al. [6]. In the next section we obtain the exact distribution for \(\tau_x \).
3. Exact distribution

Since the Laplace transform
\[
E_t \exp(-\alpha \tau_z) = 1 - \alpha \int_0^\infty e^{-\alpha L} P_t(\tau_z > L) dL
\]
satisfies system (2.1), \(P_t(\tau_z > L) = q(t, L) \) is the unique solution of the following initial-boundary value problem:

\[
\begin{align*}
\frac{\partial q(t, L)}{\partial L} &= \mathcal{A} q(t), \quad L > 0, 0 < t < z, \\
\lim_{t \to z} q(t, L) &= 0, \quad L > 0, \\
\lim_{L \to 0} q(t, L) &= 1, \quad 0 < t < z,
\end{align*}
\]

(3.1)

where \(q(t) = q(t, L) \).

Theorem 3.1. Let \(T_L \) denote the earliest time that the interval \((0, L)\) is completely covered. For \(0 \leq t < z \) and \(L > 0 \),

\[
P_t(T_L < z) = \sum_k C_k \left(1 + a_k(z) \int_0^t \exp(a_k(z)u + \Delta(u)) du \right) e^{a_k(z)L},
\]

where \(a_1(z) > a_2(z) > a_3(z) > \cdots \) are all negative zeros of \(g(a) := 1 + a \int_0^z \exp(au + \Delta(u)) du \), and

\[
C_k = -\frac{1}{a_k^2(z) \int_0^z u e^{a_k(z)u + \Delta(u)} du - 1}.
\]

Proof. Setting \(q(t, L) = U(t)V(L) \) yields two equations:

\[
V'(L) = a V(L), \quad L > 0,
\]

(3.2)

\[
\mathcal{A} U(t) = a U(t), \quad 0 < t < z,
\]

(3.3)
where a is a separation constant. The boundary condition of $q(t, L)$ leads to

$$
\lim_{t \to z} U(t) = 0.
$$ \hfill (3.4)

For $a \geq 0$ the only solution of (3.3) with boundary condition (3.4) is zero. Next, assume $a < 0$. The solution of equation (3.3) is of the form

$$
U(t) = B_1 \left(1 + a \int_0^t \exp(au + \Delta(u)) du \right),
$$

where B_1 is a constant and a can be determined by (3.4), that is,

$$
1 + a \int_0^z \exp(au + \Delta(u)) du = 0.
$$

Let $a_1(z), a_2(z), a_3(z), \cdots$ denote its all negative roots, which are all simple, and so without loss of generality assume that $0 > a_1(z) > a_2(z) > a_3(z) > \cdots$. Then the solutions to equations (3.2) and (3.3) are, respectively,

$$
V_k(L) = B_{2k} e^{a_k(z)L},
$$

$$
U_k(t) = B_{1k} \left(1 + a_k(z) \int_0^t \exp(a_k(z)u + \Delta(u)) du \right),
$$

for $k = 1, 2, \cdots$, where B_{1k} and B_{2k} are constants. Hence the general solution to problems (3.1) is of the form

$$
q(t, L) = \sum_k C_k \left(1 + a_k(z) \int_0^t \exp(a_k(z)u + \Delta(u)) du \right) e^{a_k(z)L},
$$ \hfill (3.5)

where C_k’s are constants. The initial condition given in (3.1) yields

$$
C_k = -\frac{1}{a_k^2(z) \int_0^z u e^{a_k(z)u + \Delta(u)} du - 1},
$$

and the result follows.

4. Limiting distributions
Theorem 4.1. Let T_L denote the earliest time that the interval $(0, L)$ is completely covered. For $z > 0$ and $0 \leq t < z$,

$$
\lim_{L \to \infty} \frac{1}{L} \log P_t(T_L < z) = a_1(z),
$$

(4.1)

where $a_1(z)$ is the principal zero of

$$
g(a) = 1 + a \int_0^z e^{au + \Delta(u)} du.
$$

Proof. From Theorem 3.1

$$
P_t(T_L < z) = e^{a_1(z) L} C_1 \left(1 + a_1(z) \int_0^t \exp(a_1(z)u + \Delta(u)) du \right)
+ e^{a_1(z) L} \sum_{k \geq 2} C_k \left(1 + a_k(z) \int_0^t \exp(a_k(z)u + \Delta(u)) du \right) e^{(a_k(z) - a_1(z))L}.
$$

(4.2)

The Abel test suggests that the series above is uniformly convergent with respect to L on $[L_0, \infty)$, where $L_0 > 0$. Since $C_1 \left(1 + a_1(z) \int_0^t \exp(a_1(z)u + \Delta(u)) du \right) > 0$, and $a_k(z)$’s are decreasing, the result follows.

Theorem 4.2. For each real u, let $L = L(z)$ be a function of z. If $L \to \infty$ as $z \to \infty$ in such a manner that $a_1(z)L \to -e^{-u}$ as $z \to \infty$, then

$$
\lim_{z \to \infty} P_t(T_L < z) = \exp(-e^{-u}).
$$

(4.3)

Proof. For each $a < 0$, $g(a) = 1 + a \int_0^z e^{au + \Delta(u)} du < 0$ as z is large enough. This implies that $\lim_{z \to \infty} a_k(z) = -\infty, k \geq 2$ and $\lim_{z \to \infty} a_1(z) = 0$. Moreover, the initial condition given in (3.1) leads to $\lim_{z \to \infty} C_1 = 1$. The result follows.

Remark 4.1. This proof fills in the gap mentioned in Vanderbei and Shepp [12, p. 311].
In the Holst et al. [6] they assumed that $\lambda(\cdot)$ satisfies (Λ_1) $\lim_{t \to \infty} \Lambda(t) < \infty$,

(Λ_2) $\Lambda(t) \to \infty$ and $\frac{\lambda(t)}{\Lambda(t)} \to \rho$ for some $0 \leq \rho < \infty$ as $t \to \infty$, or (Λ_3) $\Lambda(t) \to \infty$

and $\frac{\lambda(t)}{\Lambda(t)} \to c$ with $0 < c < \infty$ as $t \to \infty$. For these three classes of $\lambda(\cdot)$, the condition $a_1(z)L \to -e^{-u}$ is equivalent to

$$\Delta(z) - \log \Lambda(z) = \log L + u + o(1).$$ \hspace{1cm} (4.4)

(see Holst et al. [6, p. 902 equation (2.2)]), which is very useful in finding an explicit expression for $L(z)$ in Theorem 4.2. However, the equivalence between (4.4) and $a_1(z)L \to -e^{-u}$ does not hold for general $\lambda(\cdot)$. The following theorem gives a sufficient condition, which includes $(\Lambda_1) - (\Lambda_3)$, for this equivalence being true.

Theorem 4.3. Suppose that $\lim_{z \to \infty} \frac{\lambda(z)}{\Lambda(z)} = 0$. Then the condition $\lim_{z \to \infty} a_1(z)L = -e^{-u}$ is equivalent to

$$\Delta(z) - \log \Lambda(z) = \log L + u + o(1),$$ \hspace{1cm} (4.5)

where u is a real number.

Proof. From $\lim_{z \to \infty} \frac{\lambda(z)}{\Lambda(z)} = 0$, one can obtain

$$g'(0) = \int_{z} e^{\Delta(u)} du \sim \frac{1}{\Lambda(z)} e^{\Delta(z)}, \text{ as } z \to \infty.$$

Using one step of Newton’s method yields

$$a_1(z) \sim -\frac{1}{g'(0)} \sim -\Lambda(z) e^{-\Delta(z)}, \text{ as } z \to \infty,$$

and the equivalence follows.
The following example shows that \((\Lambda_1) - (\Lambda_3)\) do not include all cases.

Example. Suppose \(\lambda(z) = \frac{1}{2}(2z^2 + 1)e^{z^2}\), so that \(\Lambda(z) = \frac{1}{2}z e^{z^2}\) and \(\Delta(z) = e^{z^2} - 1\). Moreover, \(\lim_{z \to \infty} \frac{\lambda(z)}{\Lambda(z)} = \infty\) and \(\lim_{z \to \infty} \frac{\lambda(z)}{\Lambda(z)} = 0\). Hence \(\lambda(\cdot)\) does not satisfy \((\Lambda_1) - (\Lambda_3)\), but satisfies the condition in Theorem 4.3. It follows from (4.5) that

\[
e^{z^2} = 1 + \log \frac{1}{2} z + \log e^{z^2} + \log L + u + o(1)
\]

which is equivalent to

\[
z = \sqrt{\log \log L} + \frac{1 - \log 2 + \frac{1}{2} \log \log L + \log \log L + u}{\sqrt{\log \log L \log L}} + o \left(\frac{1}{\sqrt{\log \log L \log L}} \right),
\]

and hence (4.3) gives

\[
\lim_{L \to \infty} \text{P}_t \left(\log L \sqrt{\log \log L} T_L - G(L) < u \right) = \exp(-e^{-u}),
\]

where \(G(L) = \log L \log \log L + \frac{1}{2} \log \log L + \log \log L + 1 - \log 2\).

5. Strong Limit Theorems

For \(\lambda(x) = \lambda\), Vanderbei and Shepp [12] proved that

\[
\textbf{E} T_L^n \sim (\lambda^{-1} \log \lambda L^2)^{\frac{n}{2}}, \text{ as } L \to \infty,
\]

and Cowan et al. [4] showed that

\[
\frac{\sqrt{\lambda} T_L}{\sqrt{\log \lambda L^2}} \rightarrow 1 \text{ in probability as } L \to \infty.
\]

Actually, a stronger version can be obtained.
Theorem 5.1. Let T_L denote the earliest time that the interval $(0, L)$ is completely covered.

1. If $\lambda(x) = \lambda$, where λ is a positive finite constant, then

$$\lim_{L \to \infty} \frac{\sqrt{\lambda T_L}}{\sqrt{\log \lambda L^2}} = 1, \quad P_t\text{-almost surely.}$$

2. If $\Lambda(x) = \gamma F(x)$, where F is a distribution function with support on $(0, \infty)$ and finite mean, and γ is a positive finite constant, then

$$\lim_{L \to \infty} \frac{\gamma T_L}{\log \gamma L} = 1, \quad P_t\text{-almost surely.}$$

3. If $\lambda(x) = e^x$, then

$$\lim_{L \to \infty} \frac{T_L}{\log \log L} = 1, \quad P_t\text{-almost surely.}$$

4. If $\lambda(x) = \frac{1}{2}(2x^2 + 1)e^x$, then

$$\lim_{L \to \infty} \frac{T_L}{\sqrt{\log \log L}} = 1, \quad P_t\text{-almost surely.}$$

Proof. We prove (2) only, and the others can be proved in a similar way.

For any $0 < \rho < 1$ and for any $C > 1$,

$$P_t \left(\liminf_{L \to \infty} \frac{\gamma T_L}{\log \gamma L} < \rho \right) \leq P_t \left(\inf_{C^n \leq L \leq C^{n+1}} \frac{\gamma T_L}{\log \gamma L} < \rho, \text{ i.o.} \right)$$

$$\leq P_t (\gamma T_{C^n} \leq \rho \log \gamma C^{n+1}, \text{ i.o.})$$

$$= P_t (\gamma T_{C^n} - \log \gamma C^n - \gamma \mu \leq \rho \log \gamma C^{n+1} - \log \gamma C^n - \gamma \mu, \text{ i.o.}).$$

By Theorems 4.2 and 4.3 (see also Holst et al. [6, p. 909]),

$$\lim_{n \to \infty} P_t (\gamma T_{C^n} - \log \gamma C^n - \gamma \mu \leq u) = \exp(-e^{-u}). \quad (5.1)$$
Thus,

\[P_t(\gamma T_{C_n} - \log \gamma C^n - \gamma \mu \leq \rho \log \gamma C^{n+1} - \log \gamma C^n - \gamma \mu) \]
\[\sim \exp(-\exp(\mu \gamma - \log(\gamma^{\rho - 1} C^{(\rho - 1)n + \rho}))). \]

Note that

\[\sum_n \exp(-\exp(\mu \gamma - \log(\gamma^{\rho - 1} C^{(\rho - 1)n + \rho}))) < \infty. \]

Hence, by the Borel-Cantelli Lemma,

\[P_t \left(\liminf_{L \to \infty} \frac{\gamma T_L}{\log \gamma L} < \rho \right) = 0, \]

which implies

\[P_t \left(\liminf_{L \to \infty} \frac{\gamma T_L}{\log \gamma L} \geq 1 \right) = 1. \quad (5.2) \]

On the other hand, for any \(\epsilon > 0 \) and \(C > 1 \),

\[P_t \left(\limsup_{L \to \infty} \frac{\gamma T_L}{\log \gamma L} > 1 + \epsilon \right) \leq P_t \left(\sup_{\gamma^{C_n} \leq L \leq \gamma^{C_{n+1}}} \frac{\gamma T_L}{\log \gamma L} > 1 + \epsilon, \text{ i.o.} \right) \]
\[\leq P_t (\gamma T_{C^{n+1}} \geq (1 + \epsilon) \log \gamma C^n, \text{ i.o.}) \]
\[= P_t (\gamma T_{C^{n+1}} - \log \gamma C^{n+1} - \gamma \mu \geq (1 + \epsilon) \log \gamma C^n - \log \gamma C^{n+1} - \gamma \mu, \text{ i.o.}). \]

Using (5.1) again yields

\[P_t (\gamma T_{C^{n+1}} - \log \gamma C^{n+1} - \gamma \mu \geq (1 + \epsilon) \log \gamma C^n - \log \gamma C^{n+1} - \gamma \mu) \sim e^{\mu \gamma} C^{1-\epsilon}. \]

The Borel-Cantelli Lemma leads to

\[P_t \left(\limsup_{L \to \infty} \frac{\gamma T_L}{\log \gamma L} > 1 + \epsilon \right) = 0. \]
By the arbitrariness of $\epsilon > 0$,

$$P_{\epsilon} \left(\limsup_{L \to \infty} \frac{\gamma T_L}{\log \gamma L} \leq 1 \right) = 1,$$

and the result follows.

Acknowledgement

We are grateful to Gang Wei for helpful discussions on the zeros of the function g.

References

