
Chuancun Yin
Qufu Normal University

Sung Nok Chiu
Hong Kong Baptist University, snchiu@hkbu.edu.hk

Follow this and additional works at: https://repository.hkbu.edu.hk/hkbu_staff_publication

Part of the *Mathematics Commons*

This document is the authors' final version of the published article.

Link to published article: https://dx.doi.org/10.1080/10920277.2005.10596233

APA Citation

This Journal Article is brought to you for free and open access by HKBU Institutional Repository. It has been accepted for inclusion in HKBU Staff Publication by an authorized administrator of HKBU Institutional Repository. For more information, please contact repository@hkbu.edu.hk.
DISCUSSIONS to
“The Time Value of Ruin in a Sparre Andersen Model,”
Hans U. Gerber and Elias S. W. Shiu, April 2005

Chuancun Yin* and Sung Nok Chiu**

The ruin problem for a renewal risk model is often difficult to solve; Professors Gerber and Shiu have elegantly extended the results for the classical model in Gerber and Shiu (1998) to a Sparre Andersen risk model with Generalized Erlang interclaim times. The purpose of this discussion is to present explicit formulas for $\phi(u)$ and $f(x, y|u)$ for the special case in which $\hat{p}(\xi)$ is a rational function.

Gerber and Shiu express $\hat{\phi}$ by (eq. 7.2)

$$\hat{\phi}(\xi) = \frac{\hat{\omega}(\xi) - q(\xi)}{\gamma(\xi) - p(\xi)}$$

It is showed by Gerber and Shiu in Section 4 that, in the right half of the complex plane, the function in the denominator of (1) has n zeros $\rho_1, \rho_2, \cdots, \rho_n$. For simplicity, we assume that they are distinct. By (9.2) and (11.1), we can write

$$\hat{\phi}(\xi) = \frac{\hat{S}\omega(\xi)}{1 - \hat{S}p(\xi)}, \quad (1)$$

where the operator S is defined by

$$S = \frac{\lambda_1 \cdots \lambda_n}{c^n} \prod_{j=1}^{n} T_{\rho_j},$$

Moreover, by (9.10), $(Sp)(y)$ can be written as a linear function of $T_{\rho_j}p(y)$'s:

$$(Sp)(y) = g(y) = \frac{\prod_{i=1}^{n} \lambda_i}{c^n} \left[\sum_{j=1}^{n} \left(\prod_{k=1, k \neq j}^{n} \frac{1}{\rho_k - \rho_j} \right) T_{\rho_j}p(y) \right].$$

*Chuancun Yin, Ph.D., is a Professor in the Department of Mathematics, Qufu Normal University, Qufu 273165, China, ccyin@qfnu.edu.cn

**Sung Nok Chiu, Dr.rer.nat., is an Associate Professor in the Department of Mathematics, Hong Kong Baptist University, Hong Kong, snchiu@hkbu.edu.hk
It follows that the denominator of (1) is a rational function if and only if \(\hat{\rho}(\xi) \) is a rational function. Let \(\theta_1, \ldots, \theta_k \) be the distinct roots with negative real parts of the equation \(\hat{g}(\xi) = 1 \) and \(n_1, \ldots, n_k \) be their multiplicities, respectively. From equation (11.4) we can see that the \(\theta_k \)'s are exactly the zeros with negative real parts of equation (4.2). By the principle of partial fractions we may write

\[
\frac{1}{1 - \hat{g}(\xi)} = P_1 \left(\frac{1}{\xi - \theta_1} \right) + \cdots + P_k \left(\frac{1}{\xi - \theta_k} \right) + 1,
\]

where

\[
P_j(\alpha) = c_{j,n_j}\alpha^{n_j} + c_{j,n_j-1}\alpha^{n_j-1} + \cdots + c_{j,1}\alpha, \quad j = 1, 2, \ldots, k.
\]

Denote by

\[
Q_j(u) = c_{j,n_j} \frac{1}{(n_j - 1)!} u^{n_j-1} e^{\theta_j(\delta)u} + c_{j,n_j-1} \frac{1}{(n_j - 2)!} u^{n_j-2} e^{\theta_j(\delta)u} + \cdots + c_{j,1} e^{\theta_j(\delta)u},
\]

we have

\[
\hat{Q}_j(\xi) = P_j \left(\frac{1}{\xi - \theta_j} \right), \quad j = 1, 2, \ldots, k.
\]

Hence (1) can be written as

\[
\hat{\phi}(\xi) = \sum_{j=1}^{k} (\hat{Q}_j(\xi) \cdot \hat{S}\omega(\xi)) + \hat{S}\omega(\xi).
\]

Inverting the Laplace transform yields

\[
\phi(u) = \sum_{j=1}^{k} \int_{0}^{u} Q_j(u - x) \cdot (S\omega)(x) dx + (S\omega)(u). \tag{2}
\]

In particular, when \(n_1 = \cdots = n_k = 1 \), we have

\[
\phi(u) = \sum_{j=1}^{k} A_j \int_{0}^{u} e^{\theta_j(u-x)} \cdot (S\omega)(x) dx + (S\omega)(u), \tag{3}
\]

where

\[
A_j = -\frac{1}{\hat{g}'(\theta_j)}, \quad j = 1, 2, \ldots, k.
\]
Moreover, the discounted joint probability density function \(f(x, y|u) \) defined by (2.1) can be obtained from (2) or (3). For simplicity, we assume that all roots with negative real parts of \(\hat{g}(\xi) = 1 \) are simple, that is, \(n_1 = \cdots = n_k = 1 \). It follows from (9.11) that
\[
(S\omega)(u) = \int_0^\infty \int_0^\infty w(x, y) 1(x \geq u) f(x - u, y + u|0) dx dy,
\]
from which we obtain
\[
\int_0^u e^{\theta_j(u-z)}(S\omega)(z) dz = \int_0^\infty \int_0^\infty w(x, y) \left(\int_0^{u\wedge x} e^{\theta_j(u-z)} f(x - z, y + z|0) dz \right) dx dy.
\]
Consequently,
\[
\phi(u) = \int_0^\infty \int_0^\infty w(x, y) \sum_{j=1}^k A_j \left(\int_0^{u\wedge x} e^{\theta_j(u-z)} f(x - z, y + z|0) dz \right) dx dy
\]
\[
= \int_0^\infty \int_0^\infty w(x, y) 1(x \geq u) f(x - u, y + u|0) dx dy.
\]
(4)

Recall that \(\phi(u) = \int_0^\infty \int_0^\infty w(x, y) f(x, y|u) dx dy; \) by comparing this with (4) we find that
\[
f(x, y|u) = \sum_{j=1}^k A_j \left(\int_0^{u\wedge x} e^{\theta_j(u-z)} f(x - z, y + z|0) dz \right)
\]
\[
+ 1(x \geq u)f(x - u, y + u|0)
\]
\[
= \frac{\prod_{l=1}^n \lambda_l p(x + y) \sum_{j=1}^k A_j}{c^n} \left[e^{\theta_j u} \sum_{i=1}^n e^{-\rho_i x} \frac{1 - e^{-(u\wedge x)(\theta_j - \rho_i)}}{\theta_j - \rho_i} \prod_{k=1, k \neq i}^n \frac{1}{\rho_k - \rho_i} \right]
\]
\[
+ 1(x \geq u)f(x - u, y + u|0),
\]
with (see eq. 8.3)
\[
f(x, y|0) = \frac{\prod_{l=1}^n \lambda_l p(x + y) \sum_{j=1}^k A_j}{c^n} \left[e^{\theta_j x} \prod_{k=1, k \neq j}^n \frac{1}{\rho_k - \rho_j} \right].
\]

In particular, we get the marginal discounted probability density function
\[
f_{U(T^-)}(x|u) = \frac{\prod_{l=1}^n \lambda_l p(x) \sum_{j=1}^k A_j}{c^n} \left[e^{\theta_j u} \sum_{i=1}^n e^{-\rho_i x} \frac{1 - e^{-(u\wedge x)(\theta_j - \rho_i)}}{\theta_j - \rho_i} \prod_{k=1, k \neq i}^n \frac{1}{\rho_k - \rho_i} \right]
\]
\[
+ 1(x \geq u)\frac{\prod_{l=1}^n \lambda_l p(x) \sum_{j=1}^k A_j}{c^n} \left[e^{-\rho_j (x-u)} \prod_{k=1, k \neq j}^n \frac{1}{\rho_k - \rho_j} \right].
\]
REFERENCE