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Smoothing and SAA Method for Stochastic Programming

Problems with Non-smooth Objective and Constraints∗

Gui-Hua Lin†, Mei-Ju Luo‡ and Jin Zhang§

March 2013, Revised December 2014, August 2015 and January 2016

Abstract. We consider a stochastic non-smooth programming problem with equality,

inequality and abstract constraints, which is a generalization of the problem studied by Xu

and Zhang (Mathematical Programming, Vol.119, 371–401, 2009) where only an abstract

constraint is considered. We employ a smoothing technique to deal with the non-smoothness

and use the sample average approximation techniques to cope with the mathematical ex-

pectations. Then, we investigate the convergence properties of the approximation problems.

We further apply the approach to solve the stochastic mathematical programs with equi-

librium constraints. In addition, we give an illustrative example in economics to show the

applicability of proposed approach.

Key Words. Non-smoothness, smoothing, sample average approximation, stochastic

mathematical program with equilibrium constraints.
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1 Introduction

In the recent work [29], Xu and Zhang consider the following stochastic programming problem:

min E[f(x, ξ(ω))] (1.1)

s.t. x ∈ C,
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where C is a closed subset of Rn, ξ : Ω → Ξ ⊂ Rw is a random vector defined on the

underlying probability space (Ω, F , P ), f : Rn × Rw → R is a random function, and E
denotes the mathematical expectation. Many problems including the stochastic programming

problems with recourse and stochastic min-max problems can be covered by problem (1.1);

see [3, 10, 22, 28] for instance. In [29], the function f(x, ·) is assumed to be locally Lipschitz

continuous but not necessarily continuously differentiable with respect to x. Then the authors

employ the smoothing techniques introduced in [19] to present a smooth sample average

approximation (SAA) method for solving (1.1). They also investigate the limiting behavior of

the smoothed SAA problems. Furthermore, the convergence results are applied to conditional

value-at-risk problems and inventory control problems in supply chain. See [29] for details.

In this paper, we consider the following problem where the constraint system includes

both the functional constraints as well as the abstract constraint:

min E[f(x, ξ(ω))] (1.2)

s.t. x ∈ X ,

g(x) ≤ 0, h(x) = 0,

where X ⊆ Rn is a closed subset, the constraint functions g : Rn → Rp and h : Rn → Rq are

also locally Lipschitz continuous but not necessarily continuously differentiable everywhere.

Throughout the paper, we suppose that E[f(x, ξ(ω))] is well-defined for every x ∈ X but

cannot be calculated in a closed form. In addition, we write ξ(ω) as ξ for simplicity.

It is obvious that, when the constraint functions g and h vanish, problem (1.2) reduces to

(1.1). However, since some smoothing techniques are only applied to the objective function of

(1.1). An implicit assumption in [29] is that the constraint set C does not involve non-smooth

constraints. From this point of view, this paper can be regarded as an extension of [29].

One main motivation to consider (1.2) is the well-known mathematical program with e-

quilibrium constraints (MPEC), which is an optimization problem whose constraints include

complementarity or variational inequality systems. MPEC plays a very important role in

many fields such as engineering design, economic equilibrium, transportation science and

game theory. See [5, 13, 16] for more details about the MPEC theory, algorithms, and appli-

cations. MPEC is known to be a difficult optimization problem due to the fact that some

usual constraint qualifications such as the linear independence constraint qualification (LICQ)

and the Mangasarian-Fromovitz constraint qualification (MFCQ) are violated at any feasible

point [33, Proposition 1.1]. As a result, the classical Karush-Kuhn-Tucker (KKT) condition

is not always a necessary optimality condition for MPEC. There have been proposed several
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approaches to deal with MPEC and various stationarity concepts such as the strong station-

arity, Mordukhovich stationarity, Clarke stationarity (S-/M-/C-stationarity for short) arise;

see [24, 30–32] for detailed discussions. One popular approach in the study of MPEC is to

make use of the so-called complementarity or merit functions to reformulate MPEC as an

optimization problem with non-smooth constraints. Therefore, problem (1.2) may include

the stochastic MPEC (SMPEC) as a special case. See Section 5 given below.

Our purpose is trying to design efficient methods for solving (1.2). There are two main d-

ifficulties in dealing with problem (1.2): One is the non-smoothness of the functions {f, g, h}
and the other is the mathematical expectation operator in the objective function. Our s-

trategy is similar to [29]: We employ the smoothing techniques given in [19] to deal with

the non-smoothness and use the SAA methods to deal with the mathematical expecta-

tion. That is, given a smoothing parameter ϵ, we first construct some smoothed functions

{f̂(·, ·, ϵ), ĝ(·, ϵ), ĥ(·, ϵ)} of {f, g, h} to generate the following approximation of (1.2):

min E[f̂(x, ξ, ϵ)] (1.3)

s.t. x ∈ X ,

ĝ(x, ϵ) ≤ 0, ĥ(x, ϵ) = 0.

Then, we employ a random number generator to get some independent identically distributed

(idd) samples {ξ1, ..., ξN} and solve the smoothed SAA problem

min
1

N

N∑
i=1

f̂(x, ξi, ϵ) (1.4)

s.t. x ∈ X ,

ĝ(x, ϵ) ≤ 0, ĥ(x, ϵ) = 0.

See [15, 25, 26] for more details about SAA methods. With the increase of the sample size

N and the decrease of the smoothing parameter ϵ, we may expect to get a satisfactory

approximation solution of the original problem (1.2).

Compared with [29], the main difficulty in dealing with (1.2) is of course the additional

non-smooth constraints. Therefore, in order to establish convergence theory, we need to find

some appropriate constraint qualifications. In particular, to ease our analysis, we regard

the smoothing problem (1.3) as a perturbed optimization problem and, for convenience, we
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sometimes reformulate problems (1.2) and (1.3) as

min E[f(x, ξ(ω))] (1.5)

s.t. x ∈ X ,

0 ∈ φ(x) + K

and

min E[f̂(x, ξ, ϵ)] (1.6)

s.t. x ∈ X ,

0 ∈ φ̂(x, ϵ) + K

respectively, where K := Rp
+ × {0}q is a nonempty closed convex set and

φ(x) :=

(
g(x)
h(x)

)
, φ̂(x, ϵ) :=

(
ĝ(x, ϵ)

ĥ(x, ϵ)

)
.

We will show that the perturbed problem is stably under some regularity conditions. We will

also discuss the limiting behavior of both the smoothed problem (1.3) and the smoothed SAA

problem (1.4) as the parameters vary. Furthermore, as an extension, we will discuss a class

of SMPEC as well. Finally, we show some preliminary numerical results with a stochastic

version of Stackelberg-Nash-Cournot game.

2 Preliminaries

In this section, we introduce some notations and definitions that will be used later on.

Given a compact set M of vectors, we let ∥M∥ := maxM∈M ∥M∥, where ∥ · ∥ denotes the

Euclidean norm of a vector. Given two sets A,B ⊆ Rn, we denote by

dist(x,A) := inf
x′∈A

∥x− x′∥

and

D(A,B) := sup
x∈A

dist(x,B)

the distance form a point x ∈ Rn to A and the deviation from A to B respectively, and by

intA and convA the interior and the convex hull of A respectively. In addition, for a linear

operator A, we denote by A∗ its conjugate.
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Recall that f(x, ξ) is locally Lipschitz continuous in x. Then, for any fixed ξ ∈ Ξ, the

Clarke generalized gradient of f(x, ξ) with respect to x at x0 is defined in [2] as

∂xf(x0, ξ) :=
{
ζ ∈ Rn

∣∣ ζTd ≤ f0(x0, ξ; d) for all d ∈ Rn
}
,

where

f0(x0, ξ; d) := lim sup
y→0, λ↓0

f(x0 + λd+ y, ξ)− f(x0 + y, ξ)

λ

is the generalized directional derivative of f(x, ξ) at x0 in the direction d. In finite dimensional

spaces, ∂xf(x0, ξ) can be obtained by taking the convex hull of the set of limits of∇xf(x
′, ξ) as

x′ → x0. It is known from [2, Propositions 2.1.2 and 2.1.5] that the Clarke generalized gradient

∂xf(x, ξ) is a convex compact set and it is upper semi-continuous in x. The measurability

and integrability of ∂xf(x, ξ) with respect to the random variable are established in [29].

Lemma 2.1 Let f(x, ξ) be locally Lipschitz continuous in both x and ξ. Then the Clarke

generalized gradient ∂xf(x, ·) is measurable for every x. Furthermore, given a nonempty and

compact subset C of Rn, if there exists a measurable function κ0(ξ) such that E[κ0(ξ)] < ∞
and

∥∂xf(x, ξ)∥ ≤ κ0(ξ) (2.1)

for any x ∈ C and ξ ∈ Ξ, then E[∂xf(x, ξ)] is well defined over C.

The following definition was first introduced in [19].

Definition 2.1 Let F : Rn → R be a locally Lipschitz continuous function and ϵ ∈ R be a

parameter. A function F̂ (x, ϵ) : Rn ×R→ R is called a smoothing of F if it satisfies

(i) for every x ∈ Rn, F̂ (x, 0) = F (x);

(ii) for every x ∈ Rn, F̂ is locally Lipschitz at (x, 0);

(iii) F̂ is continuous differentiable on Rn × (R \ {0}).

The above type of smoothing covers a number of interesting elementary smoothing func-

tions in the literature. For instance, for the well-known non-smooth function

ϕ(x) := max(0, z),
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it is shown in [29] that both

ϕ1(z, ϵ) :=


z, z > ϵ;
1
4ϵ(z

2 + 2zϵ+ ϵ2), −ϵ ≤ z ≤ ϵ;
0, z < −ϵ

introduced by Alexander et al. [1] and

ϕ2(z, ϵ) := ϵ ln(1 + ez/ϵ)

introduced by Peng [18] satisfy the conditions in Definition 2.1. In particular, they satisfy

the gradient consistency at point (z, 0) and hence satisfy the upper semi-continuity property

for the partial generalized gradient map.

Note that the Lipschitz continuity in part (ii) of Definition 2.1 implies that the Clarke

generalized gradient ∂(x,ϵ)F̂ (x, 0) is well defined and hence we may compare the generalized

gradient of the smoothed function at point (x, 0) with that of the original function. Let

πx∂(x,ϵ)F̂ (x, 0) :=
{
β ∈ Rn

∣∣ (β, γ) ∈ ∂(x,ϵ)F̂ (x, 0) for some γ ∈ R
}
.

The gradient consistency defined by

πx∂(x,ϵ)F̂ (x, 0) ⊂ ∂xF (x),

is a key property used later on. There obviously holds

∂xF (x) = ∂xF̂ (x, 0) ⊂ πx∂(x,ϵ)F̂ (x, 0),

which means that, if F̂ satisfies the gradient consistency at (x, 0), we may enlarge the partial

generalized gradient set ∂xF̂ (x, 0) so as to equal to the projection πx∂(x,ϵ)F̂ (x, 0). Since

the map (x, ϵ) → πx∂(x,ϵ)F̂ (x, ϵ) is upper semi-continuous at (x, 0) [2, Proposition 2.1.5], we

have the upper semi-continuity of ∂xF̂ (x, ϵ). As a result, if we regard problem (1.3) as a

perturbed problem of (1.2), the smoothing approximation happens to be admissible in the

sense of [34, Definition 2.3].

Since both problems (1.2) and (1.3) are generally non-convex, we will focus on the limit

relationship between stationary points of the problems. We next introduce some stationarity

concepts for the problems. To this end, we let

NX (x) := {ζ ∈ Rn | ζT η ≤ 0 for all η ∈ TX (x)}

denote the normal cone of X at x and

TX (x) := {ζ ∈ Rn | ζT θ ≤ 0 for all θ ∈ ∂dist(x,X )}
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denote the tangent cone of X at x. It is well known that the above cones are closed and

convex. When X is convex and x ∈ X , the normal cone reduces to

NX (x) = {ζ ∈ Rn | ζT (x′ − x) ≤ 0 for all x′ ∈ X}.

Definition 2.2 Let x̄ be a feasible point of (1.2).

(1) x̄ is called a Karush-Kuhn-Tucker (KKT) point of (1.2) if there exist multipliers λ ∈ Rp

and µ ∈ Rq such that

0 ∈ ∂ E[f(x̄, ξ)] + ∂g(x̄)Tλ+ ∂h(x̄)Tµ+NX (x̄)

and

λ ≥ 0, λT g(x̄) = 0. (2.2)

(2) x̄ is called a weak Karush-Kuhn-Tucker (weak KKT) point of (1.2) if there exist mul-

tipliers λ ∈ Rp and µ ∈ Rq such that

0 ∈ E[∂xf(x̄, ξ)] + ∂g(x̄)Tλ+ ∂h(x̄)Tµ+NX (x̄) (2.3)

and (2.2) hold.

Suppose that the set of stationary points of the original problem is nonempty and there

exists a measurable function κ0(ξ) such that E[κ0(ξ)] < ∞ and (2.1) hold. It follows that

E[∂xf(x, ξ)] is well defined. Note that ∂E[f(x, ξ)] ⊂ E[∂xf(x, ξ)] holds under some mild

conditions on f(x, ξ) (see [2, Hypotheses 2.7.1]). In particular, we have from [2, Theorem

2.7.2] that, when f is Clarke regular on X , ∂ E[f(x, ξ)] = E[∂xf(x, ξ)] and hence the set of

weak KKT points coincides with the set of KKT points.

Definition 2.3 Let x̄(ϵ) be a feasible point of (1.3).

(1) x̄(ϵ) is called a KKT point of (1.3) if there exist multipliers λ(ϵ) ∈ Rp and µ(ϵ) ∈ Rq

such that

0 ∈ ∇xE[f̂(x̄(ϵ), ξ, ϵ)] +∇xĝ(x̄(ϵ), ϵ)
Tλ(ϵ) +∇xĥ(x̄(ϵ), ϵ)

Tµ(ϵ) +NX (x̄(ϵ))

and

λ(ϵ) ≥ 0, λ(ϵ)T ĝ(x̄(ϵ), ϵ) = 0. (2.4)
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(2) x̄(ϵ) is called a weak KKT point of (1.3) if there exist multipliers λ(ϵ) ∈ Rp and

µ(ϵ) ∈ Rq such that

0 ∈ E[∇xf̂(x̄(ϵ), ξ, ϵ)] +∇xĝ(x̄(ϵ), ϵ)
Tλ(ϵ) +∇xĥ(x̄(ϵ), ϵ)

Tµ(ϵ) +NX (x̄(ϵ)) (2.5)

and (2.4) hold.

By [23, Proposition 2, Chapter 2], if ∇xf̂(x, ξ, ϵ) is of integrable boundedness with prob-

ability one, then E[∇xf̂(x, ξ, ϵ)] = ∇xE[f̂(x, ξ, ϵ)] and hence the set of weak KKT points

coincides with the set of KKT points for problem (1.3). In what follows, we suppose that the

integrable boundedness condition holds for ∇xf̂(x, ξ, ϵ).

We now turn our attention to constraint qualifications for problem (1.2). As known to

us, the MFCQ plays an important role in nonlinear programming theory. However, since

problem (1.2) contains some non-smooth functions and an abstract constraint, it is necessary

to describe new Mangasarian-Fromovitz type constraint qualifications for (1.2). Recall that

Pappalardo [17] defines a generalized MFCQ (GMFCQ) for the non-smooth case without the

abstract constraint.

Definition 2.4 We say that the GMFCQ holds at x̄ if for any A ∈ ∂h(x̄), the rows of A are

linearly independent and there exists a vector ζ ∈ Rn such that

(i) νT ζ < 0 for every ν ∈ ∂gi(x̄), where i ∈ I(x̄) := {ı | gı(x̄) = 0}, or equivalently

g0i (x̄; ζ) < 0, ∀i ∈ I(x̄); (2.6)

(ii) Aζ = 0, for all A ∈ ∂h(x̄).

The GMFCQ can be extended to the case where the abstract constraint set X does not

vanish.

Definition 2.5 We say that the extended MFCQ (EMFCQ) holds at x̄ if, for any A ∈ ∂h(x̄),

the rows of A are linearly independent and there exists a vector ζ ∈ intTX (x̄) such that

(i) νT ζ < 0 for every ν ∈ ∂gi(x̄), where i ∈ I(x̄);

(ii) Aζ = 0, for all A ∈ ∂h(x̄).

The following constraint qualification will also be used later.
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Definition 2.6 We say that the Jourani constraint qualification (JCQ) holds at x̄ if, for any

(λ, µ) ∈ Rp
+ ×Rq\{(0, 0)} satisfying λT g(x̄) = 0, there holds

0 /∈ ∂g(x̄)Tλ+ ∂h(x̄)Tµ+NX (x̄).

It is shown in [9] that the EMFCQ implies the JCQ and, when X = Rn, the JCQ is

equivalent to the GMFCQ.

3 Convergence Analysis for Smoothing Approach

In this section, we study the limiting behavior of the smoothed problem (1.3) as the smoothing

parameter tends to zero.

3.1 Stability analysis

First of all, note that (1.6) can be regarded as a perturbed problem of (1.5). Our purpose is

to study the continuity of the optimal value function V : R→ R defined by

V(ϵ) := inf{E[f̂(x, ξ, ϵ)] : x ∈ F(ϵ)},

where

F(ϵ) := {x ∈ X | 0 ∈ φ̂(x, ϵ) + K}

= {x ∈ X | ĝi(x, ϵ) ≤ 0, i = 1, · · · , p; ĥj(x, ϵ) = 0, j = 1, · · · , q}.

We denote the corresponding optimal solution set mapping by

M(ϵ) := {x ∈ F(ϵ) | E[f̂(x, ξ, ϵ)] = V(ϵ)}.

Since X is closed, we have from [21, Example 5.8] that F is outer semi-continuous. In

particular, we note that, by [21, Commentary of Chapter 5], F is upper semi-continuous if

we consider in restriction to the compact case.

Definition 3.1 Let Γ : Rn → 2R
n
be a set valued mapping. Γ is said to be closed at ϵ̄ if the

conditions ϵN → ϵ̄, x(ϵN ) ∈ Γ(ϵN ) and x(ϵN ) → x̄ imply x̄ ∈ Γ(ϵ̄). Γ is said to be uniformly

compact near ϵ̄ if there is a neighbourhood N(ϵ̄) of ϵ̄ such that the closure of
∪

ϵ∈N(ϵ̄) Γ(ϵ) is

compact.

The following result is established by Hogan in [8].
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Lemma 3.1 Let Γ : Rn → 2R
n

be uniformly compact near ϵ̄. Then Γ is upper semi-

continuous at ϵ̄ if and only if Γ is closed.

Since f̂(x, ξ, ϵ) is locally Lipschitz continuous with respect to (x, ϵ), it is globally Lipschitz

on C × [0, ϵ0] for any compact subset C of X and positive number ϵ0 > 0. Therefore. there

exists κ̃C(ξ) > 0 such that∥∥∥f̂(x′, ξ, ϵ′)− f̂(x′′, ξ, ϵ′′)
∥∥∥ ≤ κ̃C(ξ)

(
∥x′ − x′′∥+ | ϵ′ − ϵ′′ |

)
(3.1)

holds for any x′, x′′ ∈ C, ϵ′, ϵ′′ ∈ [0, ϵ0], and almost every ξ ∈ Ξ.

Theorem 3.1 Consider problem (1.6). Suppose that

(i) there exists a compact subset C ⊂ Rn such that M(ϵ)∩C ̸= ∅ for every ϵ in a neighborhood

of 0;

(ii) E[κ̃C(ξ)] <∞;

(iii) there exists x0 ∈ V(0)∩C such that the map (x, ϵ) → ∂xφ̂(x, ϵ) is upper semi-continuous

at (x0, 0) and

0 ∈ int{φ(x0) +A(TX (x0)) + K}, ∀A ∈ ∂φ(x0). (3.2)

Then V(ϵ) is continuous at ϵ = 0.

Proof. Taking an intersection C∩X if necessary, we assume for simplicity that the compact

set C locates inside X . Since assumption (i) holds, in order to obtain the continuity of V at

0, it is sufficient to consider problem (1.6) in restriction to C instead of X .

We first show that V is lower semi-continuous at ϵ = 0. Suppose to the contrary that

there exist ε0 > 0 and a sequence ϵk → 0 such that

V(ϵk) ≤ V(0)− ε0, ∀k. (3.3)

By condition (i), we can choose

xk ∈ M(ϵk) ∩ C

for each k large sufficiently. Since C is compact, it follows from Lemma 3.1 and the discussion

above it that the map F(·) is closed. We may suppose {xk} converging to a point x̄ ∈ F(0)∩C.
It follows from (3.3) that

E[f̂(xk, ξ, ϵk)] = V(ϵk) ≤ V(0)− ε0.
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Letting k → ∞, we have from (3.1) and condition (ii) that

E[f̂(x̄, ξ, 0)] ≤ V(0)− ε0,

which is a contradiction.

We next show that V is upper semi-continuous at 0. By the locally Lipschitz continuity

of f̂ and assumption (ii), for arbitrary ε > 0, there exist neighborhoods Nε(x0) of x0 and

Nε(0) of 0 such that∣∣∣E[f̂(x, ξ, ϵ)]− E[f̂(x0, ξ, 0)]
∣∣∣ ≤ E[κ̃C(ξ)]

(
∥x− x0∥+ | ϵ− 0 |

)
≤ ε (3.4)

holds for every (x, ϵ) ∈ Nε(x0) × Nε(0). By condition (iii), in a similar way to Theorem

3.1 of [34], we can find a neighborhood N (0) of 0 such that N (0) ⊂ Nε(0) and, for every

ϵ ∈ N (0), there exists a vector x(ϵ) ∈ F(ϵ) ∩Nε(x0). It follows from (3.4) that

V(ϵ) ≤ E[f̂(x(ϵ), ξ, ϵ)] ≤ E[f̂(x0, ξ, 0)] + ε, ∀ ϵ ∈ N (0).

In consequence, we have

lim sup
ϵ→0

V(ϵ) ≤ E[f̂(x0, ξ, 0)] + ε = V(0) + ε.

This completes the proof.

We further have the following result from Theorem 3.1 immediately.

Corollary 3.1 Let x∗ be an optimal solution of (1.5). Suppose that

(i) there exists a compact subset C ⊂ Rn such that M(ϵN )∩C ≠ ∅ for every N large enough;

(ii) E[κ̃C(ξ)] <∞;

(iii) x∗ ∈ C, φ̂(x, ϵ) satisfies the gradient consistency at (x∗, 0), and

0 ∈ int{φ(x∗) +A(TX (x∗)) + K}, ∀A ∈ ∂φ(x∗). (3.5)

Then, with the increase of the sample size N , x(ϵN ) ∈ M(ϵN )∩C yields a ‘good’ approximate

optimal value V(ϵN ) of the true problem (1.5).

As mentioned in Section 2, the gradient consistency assumption is used to ensure the

upper semi-continuity of ∂xφ̂ so as to apply Theorem 3.1 of [34].
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The regularity assumption (3.5), which was first proposed in [34], can be regarded as an

extension of the Robinson constraint qualification into non-convex and non-smooth circum-

stances. Yen [34] also proved that, in the case that we are considering, it happens to be

equivalent to the JCQ, which is introduced in Section 2 and will be used for convergence

analysis of stationary points in the forthcoming parts. Moreover, [34, Lemma 2.1] restates

condition (3.5) in the following dual equivalent form: There exists a constant ς > 0 such that

∥A∗v∗ + u∗∥ ≥ ς, (3.6)

holds for any A ∈ ∂φ(x∗), v∗ ∈ B ∩ [(φ(x∗) + K)−], and u∗ ∈ NX (x
∗), where B denotes the

unit ball in Rn. (3.6) is more suitable for some proofs such as in Theorem 3.1 of [34], which

plays an extraordinary role in our stability analysis above. As a matter of fact, it is easy to

see the implication that the JCQ holds by (3.6).

Assumption (i) in Theorem 3.1 or Corollary 3.1 implies a property called tameness by

Rockafellar in [20]. In particular, [34, Theorem 4.3] provides a sufficient condition of Assump-

tion (i) as follows.

Proposition 3.1 Let x∗ be an optimal solution of (1.5). Suppose that

(i) there exists a neighbourhood N(x∗) ⊂ F(0) of x∗ such that E[κ̃N(x∗)(ξ)] <∞;

(ii) φ̂(x, ϵ) satisfies the gradient consistency at (x∗, 0) and condition (3.5) holds.

If

lim inf
∥x∥→∞, ϵ→0

E[f̂(x, ξ, ϵ)] > E[f(x∗, ξ)],

then there exists a compact subset C ⊂ Rn such that M(ϵN )∩C ̸= ∅ for every N large enough.

On the other hand, it is worth noting that, although the optimal value could be ap-

proached from Corollary 3.1, x(ϵN ) may not be regarded as a ‘good’ approximate solution

because of its potential infeasibility.

3.2 Convergence of weak KKT points

Denote by S and S(ϵ) the sets of weak KKT stationary points of problems (1.2) and (1.3)

respectively.
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Lemma 3.2 Suppose that there exists an integrable function κ(ξ) such that the Lipschitz

module of f̂(x, ξ, ϵ) with respect to x is bounded by κ(ξ). Suppose that limϵ→0 x(ϵ) → x and

f̂ satisfies the gradient consistency at (x, ξ, 0), that is,

πx∂(x,ϵ)f̂(x, ξ, 0) ⊂ ∂xf(x, ξ),

for almost every ξ. Then we have

lim sup
ϵ→0

{
E[∇xf̂(x(ϵ), ξ, ϵ)]

}
= E

[
lim sup

ϵ→0

{
∇xf̂(x(ϵ), ξ, ϵ)

}]
⊂ E[∂xf(x, ξ)].

See the proof of Theorem 3.1 in [29] for a proof of the lemma.

Theorem 3.2 Let the assumptions of Lemma 3.2 hold. Suppose that S(ϵ) is nonempty. Let

x̄(ϵ) ∈ S(ϵ) and x̄ be a limit point of x̄(ϵ). If the JCQ holds at x̄ and both ĝ and ĥ satisfy the

gradient consistency at (x̄, 0), then x̄ ∈ S.

Proof. First of all, it follows from the closeness of X and the definition of the smooth

approximation that x̄ is feasible to problem (1.2). Since the Lipschitz modulus of f̂(x, ξ, ϵ)

with respect to x is bounded by the integrable function κ(ξ), S(ϵ) coincides with the set

of KKT points of the smoothed problem (1.3). Without loss of generality, we assume that

limϵ→0 x̄(ϵ) = x̄. Let (λ(ϵ), µ(ϵ)) ∈ Rp+q be the corresponding multiplier vectors in (2.5).

(i) We first show that the set of sequence
{
(λ(ϵ), µ(ϵ))

}
is bounded for all ϵ in a neigh-

borhood of ϵ = 0. To this end, we set

τ(ϵ) :=∥ (λ(ϵ), µ(ϵ)). ∥ (3.7)

Suppose by contradiction that
{
(λ(ϵ), µ(ϵ))

}
is not bounded, which means that there exists

a sequence
{
(λ(ϵk), µ(ϵk)

}
such that limk→∞ τ(ϵk) = +∞. We may further assume that the

limits λ̄ := limk→∞
λ(ϵk)
τ(ϵk)

and µ̄ := limk→∞
µ(ϵk)
τ(ϵk)

exist. Obviously, we have

λ̄ ≥ 0, λ̄T g(x̄) = 0, ∥ (λ̄, µ̄) ∥= 1. (3.8)

Replacing the smoothing parameter ϵ in (2.5) by ϵk and dividing by τ(ϵk), we have

0 ∈ 1

τ(ϵk)
E[∇xf̂(x̄(ϵk), ξ, ϵk)] +∇xĝ(x̄(ϵk), ϵk)

T λ(ϵk)

τ(ϵk)

+∇xĥ(x̄(ϵk), ϵk)
T µ(ϵk)

τ(ϵk)
+NX (x̄(ϵk)). (3.9)

Consider the right hand side of the above generalized equation.
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• Since limk→∞ E[∇xf̂(x̄(ϵk), ξ, ϵk)] ⊂ E[∂xf(x̄, ξ)] by Lemma 3.2 and ∂xf(x̃, ξ) is well

defined by Lemma 2.1, the first term tends to 0 as k → ∞.

• By the gradient consistency assumption, both ∂xĝ(x, ϵ) and ∂xĥ(x, ϵ) are upper semi-

continuous, from which we have that, when ϵk is sufficiently small,

∇xĝ(x(ϵk), ϵk) ⊂ ∂g(x̄) + ϵkB, ∇xĥ(x(ϵk), ϵk) ⊂ ∂h(x̄) + ϵkB.

• Noting that the normal cone is upper semi-continuous, we have NX (x̄(ϵk)) ⊂ NX (x̄) +

ϵkB for every ϵk small sufficiently.

Letting k → ∞ in (3.9), we obtain

0 ∈ ∂g(x̄)T λ̄+ ∂h(x̄)T µ̄+NX (x̄),

which together with (3.8) contradicts the JCQ assumption.

(ii) Since
{
(λ(ϵ), µ(ϵ))

}
is bounded, we may assume that λ := limϵ→0 λ(ϵ) and µ :=

limϵ→0 µ(ϵ) exist. Taking a limit in (2.5) and (2.4), we get (2.3) and (2.2) immediately. As a

result, x̄ is a weak KKT point of problem (1.2), namely, x̄ ∈ S.

It is easy to see that the gradient consistency assumption in Theorem 3.2 is a little weaker

than Theorem 3.1 in [29].

4 Convergence Analysis for Smoothing SAA Approach

In this section, we focus on the smoothing SAA approach to solve problem (1.2).

4.1 Convergence of KKT points

We first study the convergence of KKT points of the smoothed SAA problem (1.4). We will

adopt the standard definition of stationarity for problem (1.4), that is, a feasible point x̄N (ϵ)

of problem (1.4) is a KKT point if and only if there exist multipliers λN (ϵ) and µN (ϵ) such

that

0 ∈ 1

N

N∑
i=1

∇xf̂(x̄N (ϵ), ξi, ϵ) +∇xĝ(x̄N (ϵ), ϵ)TλN (ϵ)

+∇xĥ(x̄N (ϵ), ϵ)TµN (ϵ) +NX (x̄N (ϵ)), (4.1)

λN (ϵ) ≥ 0, λN (ϵ)T ĝ(x̄N (ϵ), ϵ) = 0.
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We assume that, for almost every ω ∈ Ω, there exists N(ω) > 0 such that, for all N > N(ω),

(4.1) has a solution (see [26] for details).

There are two ways to set ϵ in (1.4), which will lead different convergence results: One

is to fix ϵ; the other is to let ϵ vary as N increases, that is, let ϵN → 0 as N → ∞. In

the following, we discuss the convergence for both cases. In analogy to [29], we make the

following assumption.

Assumption 4.1 There exists a small positive constant ϵ0 > 0 and a measurable function

κ(ξ) such that

sup
x∈C, ϵ∈[0,ϵ0]

∥∂xf̂(x, ξ, ϵ)∥ ≤ κ(ξ)

holds for almost every ξ ∈ Ξ, where E[κ(ξ)] <∞ and C is a compact subset of X .

The condition in the above assumption is equivalent to

sup
x∈C, ϵ∈(0,ϵ0]

∥∇xf̂(x, ξ, ϵ)∥ ≤ κ(ξ) (4.2)

and

sup
x∈C

∥∂xf(x, ξ)∥ ≤ κ(ξ). (4.3)

(4.2) is not difficult to ensure. Here we make some remarks on (4.3). Recall that f(x, ξ) is a

locally Lipschitz continuous function in both x and ξ. Suppose that there exists a measurable

function κ0(ξ) such that E[κ0(ξ)] < ∞ and (2.1) holds, which implies the well definedness

of E[∂xf(x, ξ)], and f̂ satisfies the gradient consistency at (x, ξ, 0) for all x ∈ C and ξ ∈ Ξ.

Then we have (4.3). In fact, to see this, since the gradient consistency guarantees upper

semi-continuity of ∂xf̂ , we can choose a finite υ-net, say {x1υ, ..., xMυ }, in C such that, for

every x ∈ C, there exists a point xiυ, i ∈ {1, ...,M}, such that ∥x − xiυ∥ ≤ υ, and hence we

have ∂xf(x, ξ) ⊂ ∂xf(x
i
υ, ξ) +B.

Consider the case where ϵ > 0 is fixed. It follows that all constraints of problem (1.4) are

continuously differentiable. Denote by J := {1, 2, · · · , q}.

Definition 4.1 We say that the MFCQ holds at x̄(ϵ) if {∇xĥj(x̄(ϵ), ϵ)}j∈J are linearly in-

dependent and there exists ζ ∈ intTX (x̄(ϵ)) such that

• ζT∇xĥj(x̄(ϵ), ϵ) = 0 for j ∈ J ;

• ζT∇xĝi(x̄(ϵ), ϵ) < 0 for i ∈ I(x̄(ϵ)).
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Lemma 4.1 (Proposition 7 of [26]) Let C be a nonempty compact subset of Rn. Suppose that

(i) the function Ψ(·, ξ) is continuous on C for almost every ξ ∈ Ξ;

(ii) Ψ(x, ξ) is dominated by an integrable function over C;

(iii) the sample is iid.

Then the expected value function ψ(x) := E[Ψ(x, ξ)] is finite valued and continuous on C, and
ψ̂N (x) := 1

N

∑N
i=1Ψ(x, ξi) converges to ψ(x) uniformly on C with probability one (w.p.1).

Theorem 4.1 Let ϵ ̸= 0 be fixed and {x̄N (ϵ)} be a sequence of KKT points of problems

(1.4). Let x̄(ϵ) be an accumulation point of the sequence as N tends to infinity. Suppose

that the MFCQ holds at x̄(ϵ). If there exists a compact set C ⊂ Rn such that it contains a

neighborhood of x̄(ϵ) and Assumption 4.1 holds on C, then x̄(ϵ) ∈ S(ϵ) with probability one.

Proof. Without lose of generality, we assume that x̄N (ϵ) tends to x̄(ϵ) as N → ∞. It

is easy to see that x̄(ϵ) is feasible to problem (1.3). Moreover, since uniform convergence is

equivalent to continuous convergence on a compact set [21, Theorem 5.43], we have

lim
N→∞

∥∥∥ 1

N

N∑
i=1

∇xf̂(x̄N (ϵ), ξi, ϵ)− E
[
∇xf̂(x̄(ϵ), ξ, ϵ)

]∥∥∥ = 0, w.p.1. (4.4)

(i) We first show that the set of Lagrange multipliers
{
(λN (ϵ), µN (ϵ))

}
is bounded. To

this end, we set

τN (ϵ) :=

p∑
i=1

λNi (ϵ) +

q∑
j=1

| µNj (ϵ) | . (4.5)

Suppose by contradiction that
{
(λN (ϵ), µN (ϵ))

}
is unbounded. As a result, there exists

a subsequence satisfying limk→∞ τNk(ϵ) = +∞. We may further assume that the limits

λ̄i(ϵ) := limk→∞
λ
Nk
i (ϵ)

τ
Nk
i (ϵ)

(i = 1, 2, · · · , p) and µ̄j(ϵ) := limk→∞
µ
Nk
j (ϵ)

τ
Nk
j (ϵ)

(j = 1, 2, · · · , q) exist.

Obviously, we have

p∑
i=1

λ̄i(ϵ) +

q∑
j=1

| µ̄j(ϵ) |= 1. (4.6)

Dividing (4.1) by τNk(ϵ), we have

0 ∈ 1

NkτNk(ϵ)

Nk∑
i=1

∇xf̂(x̄Nk
(ϵ), ξi, ϵ) +

p∑
i=1

λNk
i (ϵ)

τNk(ϵ)
∇xĝi(x̄Nk

(ϵ), ϵ)

+

q∑
j=1

µNk
j (ϵ)

τNk(ϵ)
∇xĥj(x̄Nk

(ϵ), ϵ) +NX (x̄Nk
(ϵ)). (4.7)
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By the MFCQ assumption, {∇xĥj(x̄(ϵ), ϵ)}j∈J are linearly independent. Let J0 := {j ∈
J | µ̄(ϵ)j > 0}. Then, by Gordan’s Theorem, there exists ρ0 ∈ Rn such that

ρT0 ∇xĥj(x̄(ϵ), ϵ)

{
< 0, j ∈ J0,
> 0, j /∈ J0.

(4.8)

Let ζ ∈ intTX (x̄(ϵ)) be the vector satisfying Assumption 4.1. Choose β0 > 0 and α0 ∈ (0, 1)

such that

(1− α0)ζ
T∇xĝi(x̄(ϵ), ϵ) + α0ρ

T
0 ∇xĝi(x̄(ϵ), ϵ) ≤ −β0 < 0, ∀i ∈ I(x̄(ϵ)),

and

ρ̄0 := (1− α0)ζ + α0ρ0 ∈ TX (x̄(ϵ)).

Let

ϑ0 := min
j∈J

| ρT0 ∇xĥj(x̄(ϵ), ϵ) |, γ0 := min(β0, α0ϑ0) > 0.

We have

ρ̄T0 ∇xĝi(x̄(ϵ), ϵ) ≤ −β0 ≤ −γ0 < 0, i ∈ I(x̄(ϵ))

and

ρ̄T0 ∇xĥj(x̄(ϵ), ϵ) = α0ρ
T
0 ∇xĥj(x̄(ϵ), ϵ)

{
≤ −α0ϑ0 ≤ −γ0, j ∈ J0,
≥ α0ϑ0 ≥ γ0, j /∈ J0.

Return now to (4.7). As shown in (4.4), there holds

lim
k→∞

1

Nk

Nk∑
i=1

∇xf̂(x̄Nk
(ϵ), ξi, ϵ) = E

[
∇xf̂(x̄(ϵ), ξ, ϵ)

]
w.p.1.

Moreover, we have limk→∞∇xĝi(x̄Nk
(ϵ), ϵ) = ∇xĝi(x̄(ϵ), ϵ) and limk→∞∇xĥj(x̄Nk

(ϵ), ϵ) =

∇xhj(x̄(ϵ), ϵ). In addition, since the normal cone is upper semi-continuous, we haveNX (x̄Nk
(ϵ)) ⊂

NX (x̄(ϵ)) + ϵNk
B when k is large enough. Thus, since ρ̄0 ∈ TX (x̄(ϵ)), by multiplying (4.7)

with ρ̄0 and taking a limit, we have

0 ≤
p∑

i=1

λ̄i(ϵ)ρ̄
T
0 ∇xĝi(x̄(ϵ), ϵ) +

q∑
j=1

µ̄j(ϵ)ρ̄
T
0 ∇xĥj(x̄(ϵ), ϵ) ≤ −γ0

( p∑
i=1

λ̄i(ϵ) +

q∑
j=1

| µ̄j(ϵ) |
)
.

Since γ0 > 0, this obviously contradicts (4.6) and hence
{
(λN (ϵ), µN (ϵ))

}
is bounded.

(ii) Since
{
(λN (ϵ), µN (ϵ))

}
is bounded, we may assume that λ(ϵ) := limN→∞ λN (ϵ) and

µ(ϵ) := limN→∞ µN (ϵ) exist. Combined with the assertion above, by taking a limit in (4.1),
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we obtain (2.5) and (2.4) immediately. As a result, x̄(ϵ) is a weak KKT point of problem

(1.3), i.e., x̄(ϵ) ∈ S(ϵ).

Combining Theorem 3.2 and Theorem 4.1, we may expect that, when N is sufficiently

large and ϵ > 0 is sufficiently small, xN (ϵ) is an acceptable approximation weak KKT point

of the original problem (1.2).

We now turn to the case where ϵ = ϵN → 0 as N → ∞. In this case, a feasible point

x̄(ϵN ) is a KKT point of problem (1.4) with ϵ = ϵN if and only if there exist multipliers λ(ϵN )

and µ(ϵN ) such that

0 ∈ 1

N

N∑
i=1

∇xf̂(x̄(ϵN ), ξi, ϵN ) +∇xĝ(x̄(ϵN ), ϵN )Tλ(ϵN )

+∇xĥ(x̄(ϵN ), ϵN )Tµ(ϵN ) +NX (x̄(ϵN )), (4.9)

λ(ϵN ) ≥ 0, λ(ϵN )T ĝ(x̄(ϵN ), ϵN ) = 0.

The following result is extracted from the proof of Theorem 4.3 in [29].

Lemma 4.2 Let V be a compact set and G(v, ξ) : V ×Ξ → 2ℜ
m
be a measurable and compact

set-valued mapping that is upper semi-continuous with respect to v on V for almost every ξ.

Let {ξ1, · · · , ξN} be independently and identically distributed random samples and GN (v) :=
1
N

∑N
i=1 G(v, ξi). Suppose that G(v, ξ) is dominated by an integrable function. Let {vN} be an

arbitrary sequence in V and v̄ be an accumulation point of {vN}. Then

lim
N→∞

D
(
GN (vN ),E

[
conv G(v̄, ξ)

])
= 0.

Theorem 4.2 Let {x̄(ϵN )} be a sequence of KKT points of problems (1.4) with ϵ = ϵN . Let

x̄ be an accumulation point of the sequence and the JCQ hold at x̄. Suppose that, for almost

every ξ, f̂ , ĝ and ĥ satisfy the gradient consistency at (x̄, ξ, 0), (x̄, 0), and (x̄, 0) respectively,

that is,

πx∂(x,ϵ)f̂(x̄, ξ, 0) ⊂ ∂xf(x̄, ξ), πx∂(x,ϵ)ĝ(x̄, 0) ⊂ ∂xg(x̄), πx∂(x,ϵ)ĥ(x̄, 0) ⊂ ∂xh(x̄).

If there exists a compact set C ⊂ Rn such that it contains a neighborhood of x̄ and Assumption

4.1 holds, then we have x̄ ∈ S with probability one.

Proof. In analogy to [29, Theorem 4.4], we define a set-valued mapping as follows:

A(x, ξ, ϵ) :=

 ∇xf̂(x, ξ, ϵ), ϵ ̸= 0

conv
{

lim sup
x′→x, ϵ′→0

πx∂(x,ϵ)f̂(x
′, ξ, ϵ′)

}
, ϵ = 0.
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Then (4.9) can be rewritten as

0 ∈ 1

N

N∑
i=1

A(x(ϵN ), ξi, ϵN ) + ∂xĝ(x̄(ϵN ), ϵN )Tλ(ϵN )

+∂xĥ(x̄(ϵN ), ϵN )Tµ(ϵN ) +NX (x̄(ϵN )). (4.10)

It follows from the proof of [29, Theorem 4.4], Lemma 4.2, and the gradient consistency of f̂

that

lim sup
N→∞

1

N

N∑
i=1

A(x(ϵN ), ξi, ϵN ) ⊂ E
[
πx∂(x,ϵ)f̂(x̄, ξ, 0)

]
⊂ E

[
∂xf(x̄, ξ)

]
.

Similarly, from the upper semi-continuity derived by the gradient consistency, we have

lim sup
N→∞

∂xĝ(x̄(ϵN ), ϵN ) ⊂ ∂xĝ(x̄, 0) = ∂g(x̄)

and

lim sup
N→∞

∂xĥ(x̄(ϵN ), ϵN ) ⊂ ∂xĥ(x̄, 0) = ∂h(x̄).

Note that the normal cone is upper semi-continuous. In a similar way to prove Theorem 3.2,

we can show that the corresponding multipliers set is bounded and hence x̄ is a weak KKT

point of problem (1.2). This completes the proof.

4.2 Exponential convergence of optimal values

We next discuss the convergence of optimal values of the smoothed SAA problems. Note that

problem (1.4) with ϵ = ϵN can be equivalently rewritten as

min
1

N

N∑
i=1

f̂(x, ξi, ϵN ) (4.11)

s.t. x ∈ X ,

0 ∈ φ̂(x, ϵN ) + K.

Define the feasible set mapping F, the optimal value function V, and the corresponding

optimal solution set mapping M as in Section 3.1.

Theorem 4.3 Let x∗ denote an optimal solution of (1.5). Suppose that

(i) there exists a compact subset C ⊂ Rn such that M(ϵN )∩C ̸= ∅ for every N large enough

w.p.1;
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(ii) E[κ̃C(ξ)] <∞, where κ̃C denotes the control function in (3.1);

(iii) the moment generating function E[eκ̃C(ξ)t] is finite valued for all t in a neighborhood of

zero;

(iv) x∗ ∈ C, φ̂(x, ϵ) satisfies the gradient consistency at (x∗, 0), and

0 ∈ int{φ(x∗) +A(TX (x∗)) + K}, ∀A ∈ ∂φ(x∗); (4.12)

(v) for any given x ∈ C and ϵ ∈ [0, ϵ0], the moment generating function E
[
e(f̂(x,ξ,ϵ)−E[f̂(x,ξ,ϵ)])t

]
is finite valued for all t in a neighborhood of zero.

Then, with probability approaching one exponentially fast, x(ϵN ) ∈ M(ϵN ) ∩ C yields an

approximate optimal value V(ϵN ) of problem (1.5) with the increase of the sample size N .

Proof. As stated in the proof of Theorem 3.1, without loss of generality, we consider

problem (1.6) in restriction to C instead of X .

By the assumptions (i)–(iii) and (v), we have from Theorem 5.1 of [27] that, for any δ > 0,

there exist positive constants C(δ) and β(δ) independent of N such that

Prob

{
sup

x∈C, ϵ∈[0,ϵ0]

∣∣∣ 1
N

N∑
i=1

f̂(x, ξi, ϵ)− E
[
f̂(x, ξ, ϵ)

]∣∣∣ > δ

}
≤ C(δ)e−Nβ(δ). (4.13)

Let σ := E[κ̃(ξ)]. Since ϵN → 0 as N → ∞, there exists N(ω) > 0 such that ϵN ≤ δ/σ

whenever N > N(ω). By the assumption (iv), the map (x, ϵ) → ∂xφ̂(x, ϵ) is upper semi-

continuous at (x∗, 0). We next show

Prob

{∣∣∣ 1
N

N∑
i=1

f̂(x(ϵN ), ξi, ϵN )− E
[
f̂(x∗, ξ)

]∣∣∣ > 3δ

}
≤ C(δ)e−Nβ(δ). (4.14)

(I) We first show

Prob

{
1

N

N∑
i=1

f̂(x(ϵN ), ξi, ϵN )− E
[
f(x∗, ξ)

]
< −3δ

}
≤ C(δ)e−Nβ(δ). (4.15)

Otherwise, there must exist a subsequence {Nk} such that

Prob

{
1

Nk

Nk∑
i=1

f̂(x(ϵNk
), ξi, ϵNk

)− E
[
f(x∗, ξ)

]
< −3δ

}
> C(δ)e−Nkβ(δ), ∀k.

Since C is compact, by Lemma 3.1, the map F is closed. Therefore, we may suppose that

lim
k→∞

x(ϵNk
) = x̄ ∈ F(0) ∩ C.
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Note that

1

Nk

Nk∑
i=1

f̂(x(ϵNk
), ξi, ϵNk

)− E
[
f(x∗, ξ)

]
=

1

Nk

Nk∑
i=1

f̂(x(ϵNk
), ξi, ϵNk

)− E
[
f̂(x(ϵNk

), ξ, ϵNk
)
]

+E[f̂(x(ϵNk
), ξ, ϵNk

)]− E[f(x̄, ξ)]

+E[f(x̄, ξ)]− E[f(x∗, ξ)].

Since x∗ is an optimal solution, there holds E[f(x̄, ξ)]−E[f(x∗, ξ)] ≥ 0. Choose k sufficiently

large so that ϵNk
≤ δ/σ and ∥ x̄− x∗ ∥≤ δ/σ. It follows that∣∣∣E[f̂(x(ϵNk
), ξ, ϵNk

)]− E[f(x̄, ξ)]
∣∣∣ ≤ E[κ̃C(ξ)]

(
∥x(ϵNk

)− x̄∥ + ϵNk

)
≤ 2δ.

We then have

Prob

{
sup

x∈C, ϵ∈[0,ϵ0]

∣∣∣ 1

Nk

Nk∑
i=1

f̂(x, ξi, ϵ)− E
[
f̂(x, ξ, ϵ)

]∣∣∣ > δ

}

≥ Prob

{
1

Nk

Nk∑
i=1

f̂(x(ϵNk
), ξi, ϵNk

)− E
[
f̂(x(ϵNk

), ξ, ϵNk
)
]
< −δ

}

≥ Prob

{
1

Nk

Nk∑
i=1

f̂(x(ϵNk
), ξi, ϵNk

)− E
[
f(x∗, ξ)

]
< −3δ

}
> C(δ)e−Nkβ(δ).

This contradicts (4.13) and hence (4.15) is true.

(II) Now we show

Prob

{
1

N

N∑
i=1

f̂(x(ϵN ), ξi, ϵN )− E
[
f(x∗, ξ)

]
> 3δ

}
≤ C(δ)e−Nβ(δ). (4.16)

Let N be sufficiently large so that ϵN ≤ δ/σ. By the Lipschitz continuity of f̂ , there exists a

neighborhood Nδ(x
∗) of x∗ such that∣∣∣E[f̂(x, ξ, ϵN )]− E[f(x∗, ξ)]

∣∣∣ ≤ E[κ̃(ξ)]
(
∥x− x∗∥+ | ϵN − 0 |

)
≤ 2δ (4.17)

for every x ∈ Nδ(x
∗). By the assumption (iv), we can apply [34, Theorem 3.1] to find a

neighborhood N (0) of 0 such that N (0) ⊂ [−δ/σ, δ/σ] and there exists a vector x′(ϵN ) ∈
F(ϵN ) ∩Nδ(x

∗) for every N . Since x(ϵN ) is an optimal solution of (4.11) and

1

N

N∑
i=1

f̂(x(ϵN ), ξi, ϵN )− E
[
f(x∗, ξ)

]
=

1

N

N∑
i=1

f̂(x(ϵN ), ξi, ϵN )− 1

N

N∑
i=1

f̂(x′(ϵN ), ξi, ϵN )

+
1

N

N∑
i=1

f̂(x′(ϵN ), ξi, ϵN )− E[f̂(x′(ϵN ), ξ, ϵN )]

+E[f̂(x′(ϵN ), ξ, ϵN )]− E[f(x∗, ξ)],
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we have from (4.17) that

Prob

{
1

N

N∑
i=1

f̂(x(ϵN ), ξi, ϵN )− E
[
f(x∗, ξ)

]
> 3δ

}

≤ Prob

{
1

N

N∑
i=1

f̂(x′(ϵN ), ξi, ϵN )− E[f̂(x′(ϵN ), ξ, ϵN )] > δ

}

≤ Prob

{
sup

x∈C, ϵ∈[0,ϵ0]

∣∣∣ 1
N

N∑
i=1

f̂(x, ξi, ϵ)− E
[
f̂(x, ξ, ϵ)

]∣∣∣ > δ

}
≤ C(δ)e−Nβ(δ),

that is, (4.16) is true.

This completes the proof of (4.14), which means that, with probability at least 1 −
C(δ)e−Nβ(δ), an optimal solution of (4.11) becomes a (3δ-approximate) optimal solution of

problem (1.5).

The above theorem gives a result of exponential convergence in probability of the SAA

estimators. Actually, by replacing the assumptions with some moderate conditions, we can

obtain that the sequence of optimal solutions of (4.11) converges to an optimal solution of

(1.5) with probability one. To this end, we make the following assumption:

Assumption 4.2 There exists a constant ϵ0 > 0 and a measurable function κ̄C(ξ) such that

sup
x∈C, ϵ∈[0,ϵ0]

|f̂(x, ξ, ϵ)| ≤ κ̄C(ξ)

for all ξ ∈ Ξ, where E[κ̄C(ξ)] <∞ and C is a compact subset of X .

Note that, under the above assumption, Lemma 4.1 can be applied to 1
N

∑N
i=1 f̂(x(ϵN ), ξi, ϵN )

and hence we have the following convergence result easily.

Theorem 4.4 Let x∗ denote an optimal solution of (1.5). Suppose that the assumptions

(i) and (iv) in Theorem 4.3 and Assumption 4.2 hold. Then, with probability one, x(ϵN ) ∈
M(ϵN ) ∩ C becomes a ‘good’ approximate optimal solution of problem (1.5) with the increase

of the sample size N .

Here, we omit its proof because it is similar to Theorem 3.1. We next make some remarks

on the assumptions.

In Theorem 4.3, condition (ii) requires the Lipschitz module of the smoothed function to

be integrable; conditions (iii) and (v) mean that the probability distribution of the random
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variables κ̃C(ξ) and f̂(x, ξ, ϵ) die exponentially fast in the tails and particularly, they hold if

ξ has a distribution supported on a bounded subset of Rk; condition (iv), which generally

guarantees the stability of the smooth approximation, has been remarked in Section 3.1. The

following proposition gives a sufficient condition for condition (i).

Proposition 4.1 Let x∗ denote an optimal solution of problem (1.5). Suppose that

(i) Assumption 4.2 holds in a neighborhood of x∗;

(ii) φ̂(x, ϵ) satisfies the gradient consistency at (x∗, 0) and condition (3.5) holds.

If

lim inf
∥x∥→∞, N→∞

1

N

N∑
i=1

f̂(x, ξi, ϵN ) > E[f(x∗, ξ)]

holds with probability one, there almost surely exists a compact subset C ⊂ Rn such that

M(ϵN ) ∩ C ̸= ∅ for any N large sufficiently.

Since the domination assumption (i) guarantees uniform convergence (and hence contin-

uous convergence), one can prove the above proposition in a similar way to [34, Theorem

4.3].

5 Applications to SMPEC

In this section, we apply the approach discussed in the previous sections to the following

SMPEC:

min E[f(x, ξ)] (5.1)

s.t. x ∈ X ,

E[G(x, ξ)] ≥ 0, E[H(x, ξ)] ≥ 0, E[G(x, ξ)]TE[H(x, ξ)] = 0,

where X and f are the same as above, G,H : Rn → Rm are locally Lipschitz and continuously

differentiable in the variable x, and E[G(x, ξ)] and E[H(x, ξ)] are well defined for every x ∈ X .

By using the Fischer-Burmeister function

φ(a, b) := a+ b−
√
a2 + b2

23



given in [4], problem (5.1) can be equivalently written as the nonlinear programming problem

min E[f(x, ξ(ω))] (5.2)

s.t. x ∈ X ,

Φ(x) = 0,

where Φ : Rn → Rm is defined by

Φ(x) :=
(
φ(E[G1(x, ξ)],E[H1(x, ξ)]), · · · , φ(E[Gm(x, ξ)],E[Hm(x, ξ)])

)T
.

We make extra assumption that ∇xG and ∇xH are locally Lipschitz continuous with

respect to x, which means that G,H,∇xG and ∇xH are all globally Lipschitz over any

compact set C. That is, there exists κ̂C(ξ) > 0 such that

∥G(x′, ξ)−G(x′′, ξ)∥ ≤ κ̂C(ξ)∥x′ − x′′∥, ∥H(x′, ξ)−H(x′′, ξ)∥ ≤ κ̂C(ξ)∥x′ − x′′∥

and

∥∇xG(x
′, ξ)−∇xG(x

′′, ξ)∥ ≤ κ̂C(ξ)∥x′ − x′′∥, ∥∇xH(x′, ξ)−∇xH(x′′, ξ)∥ ≤ κ̂C(ξ)∥x′ − x′′∥

for any x′, x′′ ∈ C and almost every ξ ∈ Ξ. In accordance with [23, Proposition 2], these

inequalities guarantee the continuous differentiability of E[G(x, ξ)] and E[H(x, ξ)]. It is not

difficult to see that φ(E[Gl(x, ξ)],E[Hl(x, ξ)]) is locally Lipschitz for each l = 1, 2, · · · ,m and

so is Φ(x). Then we may apply the smoothing SAA method discussed in the previous sections

to problem (5.2) since, with a little extension, (5.2) is a special case of problem (1.2). The

smoothing SAA approximation problem becomes

min
1

N

N∑
i=1

f̂(x, ξi, ϵN ) (5.3)

s.t. x ∈ X ,

Φ̂(x, ϵN ) = 0,

where Φ̂ is defined by

(
φ̂(

1

N

N∑
i=1

G1(x, ξ
i),

1

N

N∑
i=1

H1(x, ξ
i), ϵN ), · · · , φ̂( 1

N

N∑
i=1

Gm(x, ξi),
1

N

N∑
i=1

Hm(x, ξi), ϵN )
)T

with the smoothing Fischer-Burmeister function [11]

φ̂(a, b, ϵ) := a+ b−
√
a2 + b2 + ϵ2.
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Let x be feasible to (5.2). Then we have

∂Φi(x) =


∇xE[Gi(x, ξ)]

(
1− E[Gi(x,ξ)]√

E[Gi(x,ξ)]2+E[Hi(x,ξ)]2

)
+

∇xE[Hi(x, ξ)]
(
1− E[Hi(x,ξ)]√

E[Gi(x,ξ)]2+E[Hi(x,ξ)]2

)
, i ∈ IE[G](x)

c ∪ IE[H](x)
c;

∇xE[Gi(x, ξ)](1− α) +∇xE[Hi(x, ξ)](1− β), i ∈ IE[G](x) ∩ IE[H](x)

for each i, where (α, β) ∈ R2 denotes an arbitrary vector with ∥(α, β)∥ ≤ 1. On the other

hand, we have

πx∂(x,ϵ)Φ̂i(x, 0) = lim sup
(x′,ϵ)→(x,0)

∇xΦ̂i(x
′, ϵ)

= lim sup
(x′,ϵ)→(x,0)

∇xE[Gi(x
′, ξ)]

(
1− E[Hi(x

′, ξ)]√
E[Hi(x′, ξ)]2 + E[Hi(x′, ξ)]2 + ϵ2

)
+∇xE[Gi(x

′, ξ)]
(
1− E[Gi(x

′, ξ)]√
E[Gi(x′, ξ)]2 + E[Hi(x′, ξ)]2 + ϵ2

)
= ∂Φi(x).

From the above discussion, we see that Φ̂ satisfies the gradient consistency at (x, 0), which

means that ∂xΦ̂(x, ϵ) enjoys the upper semi-continuity. Thus, we can claim safely that the

smoothing SAA approach given in the previous sections is admissible.

We now turn to discuss problem (5.2). For coherent adoption, some notation needs to be

specialized here. Definition 2.6, i.e., the JCQ can be written as follows.

Definition 5.1 For all λ ∈ Rm\{0}, there holds

0 /∈ ∂Φ(x̄)Tλ+NX (x̄).

From the explicit formula of ∂Φ(x), it is easy to see that the JCQ is equivalent to the

MPEC no nonzero abnormal multiplier constraint qualification (MPEC-NNAMCQ) of Clarke

(C-) type [7,31]. Sufficient conditions for this condition to hold include the well-known MPEC

linear independence constraint qualification (MPEC-LICQ).

Note that Φ̂(x, ϵ) satisfies the gradient consistency at (x, 0) for all feasible point x. If we

apply the smoothing SAA method (5.2), under moderate condition such as the MPEC-LICQ,

it is not difficult to obtain some results related to the stability and convergence. We next

state a convergence result only and omit its proof here.

Theorem 5.1 Suppose that there exist multipliers λ(ϵN ) ∈ Rm such that x̄(ϵN ) satisfies

0 ∈ 1

N

N∑
i=1

∂xf̂(x̄(ϵN ), ξi, ϵN ) + ∂xΦ̂(x̄(ϵN ), ϵN )Tρ(ϵN ) +NX (x̄(ϵN )),
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namely, x̄(ϵN ) is a stationary point of the smoothing SAA problem (5.1). Let ϵN → 0 as

N → ∞ and x̄ be an accumulation of the sequence. Suppose that the C-type MPEC-NNAMCQ

holds at x̄. Suppose also that, for almost every ξ, f̂ satisfies the gradient consistency at

(x̄, ξ, 0), (x̄, 0) and (x̄, 0) respectively. If there exists a compact set C ⊂ Rn containing a

neighborhood of x̄ and Assumption 4.1 holds, then x̄ is a weakly C-stationary point of problem

(5.1) with probability one.

In the rest of this section, we use the example given by Lin et al. in [12] to illustrate the

smoothing SAA approximation method for solving a stochastic Stackelberg-Nash-Cournot

game in the European gas market where a particular gas producer has an opportunity to

develop a new and important field. Let x denote the decision variable of the leader, that

is, the quantity supplied by the leader to the market, and yi denote the decision variable

of the i-th follower, that is, the quantity supplied by the i-th firm to the market. Then

the stochastic Stackelberg-Nash-Cournot equilibrium problem is formulated as the following

SMPEC [12]:

max E
[
xp(x+ eT y, ξ)

]
− c0(x) (5.4)

s.t. 0 ≤ x ≤ L,

0 ≤ y ⊥ E
(
F (x, y, ξ)

)
≥ 0,

where p(τ, ξ) denotes the inverse demand function with τ to be the total quantity of sup-

ply to the market, L > 0 is a constant and c0(x) is the cost for the leader to produce x,

e := (1, . . . , 1)T ∈ Rm, F (x, y, ξ) := −p(x + yTe, ξ)e − p
′
τ (x + yTe, ξ)y + c

′
(y), c

′
(y) :=

(c
′
1(y1), . . . , c

′
m(ym))T , and ci(yi) is the total cost for the i-th firm to produce yi.

In order to demonstrate the proposed method, we consider three followers and suppose

the involved functions to be

p(τ, ξ) := 20− (0.002ξ + 0.003)τ,

c0(x) := 9.5x+ 60,

c1(y1) := 8.6y1 + 48,

c2(y2) := 8.9y2 + 45,

c3(y3) := 9.2y3 + 75.

Moreover, we suppose that the stochastic variable ξ is uniformly distributed on [−1, 1] and
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L = 1800. Then the above problem (5.4) becomes

max E[x(20− (0.002ξ + 0.003)(x+ y1 + y2 + y3) + ξ)]− c0(x) (5.5)

s.t. 0 ≤ x ≤ 1800,

y ≥ 0, E[F (x, y, ξ)] ≥ 0,

yTE[F (x, y, ξ)] = 0

with F (x, y, ξ) := N(ξ)x+M(ξ)y + q and

N(ξ) :=

 0.002ξ + 0.003
0.002ξ + 0.003
0.002ξ + 0.003

 ,

M(ξ) :=

 0.004ξ + 0.006, 0.002ξ + 0.003, 0.002ξ + 0.003
0.002ξ + 0.003, 0.004ξ + 0.006, 0.002ξ + 0.003
0.002ξ + 0.003, 0.002ξ + 0.003, 0.004ξ + 0.006

 ,

q := −(11.4, 11.1, 10.8)T .

The solution of this problem is (x∗, y∗) = (1450, 662.5, 562.5, 462.5)T . Since there always

holds E[F (x∗, y∗, ξ)] = 0 and the gradients

{∇(x,y)E[F1(x
∗, y∗, ξ)],∇(x,y)E[F2(x

∗, y∗, ξ)],∇(x,y)E[F3(x
∗, y∗, ξ)]}

are linearly independent, the MPEC-LICQ holds at (x∗, y∗).

In our tests, we employed the command “haltonset” in Matlab R2010a to generate random

sequences and the solver “fmincon” to solve the smoothing SAA approximation problems.

In particular, the optimization algorithm was set to be interior-point algorithm. Moreover,

we chose the initial point to be (20, 20, 20, 20)T , set the parameter ϵN := 1
N , and employed

φ̂(a, b, ϵ) as the smoothing function of φ(a, b). The computational results are shown in Table

1, in which x̄(ϵN ) denotes the solution of the smoothing SAA approximation problems for

example (5.5). The results shown in the table reveal that the smoothing SAA method was

able to solve this example successfully.

6 Conclusions

We have proposed a smoothing and SAA approximation approach for solving the non-smooth

stochastic programming problem (1.2). The approach is similar to the way used in [29].

However, in order to deal with the additional non-smooth constraints, we have presented

some appropriate constraint qualifications, which have been used in the convergence analysis.
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Table 1: Computational results

N ϵN x̄(ϵN )

102 1/102 (1546.63, 622.25, 522.37, 422.30)

103 1/103 (1600.57, 542.87, 568.24, 432.57)

104 1/104 (1685.24, 665.85, 591.38, 458.37)

105 1/105 (1584.25, 658.89, 568.54, 468.91)

106 1/106 (1436.59, 660.38, 560.85, 459.67)

107 1/107 (1450.38, 662.43, 562.68, 462.39)

We have shown that the perturbed problem (1.3) is stably under some regularity conditions.

We have also investigated the limiting behavior of both the smoothed problem (1.3) and the

smoothed SAA problem (1.4). Furthermore, we have applied the proposed approach to the

SMPEC (5.1).
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