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The cAC10-L4-MMAF in which cAC10 (anti-CD30) linked to the antimitotic auristatin derivative
MMAF via a non-cleavable maleimidocaproyl linker was approximately as potent as cAC10-L1-MMAF
with a dipeptide linker in vitro against a large panel of cell lines and was equally potent in vivo
(Figure 5) [48,49].Int. J. Mol. Sci. 2016, 17, 561 7 of 22 
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The drug released from cAC10-L4-MMAF was the cysteine-L4-MMAF adduct analyzed by 
LCMS, which likely arises from monoclonal antibody degradation within the lysosome of targeted 
cells (Figure 6) [43]. 
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In the same way, a humanized anti-CD70 mAb was conjugated to the anti-microtubule agent 
MMAF via the non-cleavable maleimidocaproyl linker and formed another ADC SGN-75. In the 
clinical trial, SGN-75 inhibited the growth of human carcinomas and improved potency  in vitro by 
increasing the drug-loading, with out substantial effects on the PK properties and pharmacodynamic 
(PD) in vivo [49,51]. 

3.2. Cleavable Linkers 

The cleavable linkers play a crucial role in the success of an ADC, being stable in the blood 
circulation for a long period of time and efficiently being released in the tumor microenvironment, 
for both the chemically labile linkers and enzyme cleavable linkers. 
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The drug released from cAC10-L4-MMAF was the cysteine-L4-MMAF adduct analyzed by LCMS,
which likely arises from monoclonal antibody degradation within the lysosome of targeted cells
(Figure 6) [43].
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In the same way, a humanized anti-CD70 mAb was conjugated to the anti-microtubule agent
MMAF via the non-cleavable maleimidocaproyl linker and formed another ADC SGN-75. In the
clinical trial, SGN-75 inhibited the growth of human carcinomas and improved potency in vitro by
increasing the drug-loading, without substantial effects on the PK properties and pharmacodynamic
(PD) in vivo [49,51].

3.2. Cleavable Linkers

The cleavable linkers play a crucial role in the success of an ADC, being stable in the blood
circulation for a long period of time and efficiently being released in the tumor microenvironment,
for both the chemically labile linkers and enzyme cleavable linkers.

3.2.1. Chemically Labile Linkers

The chemically labile linkers, including acid-cleavable linkers and reducible linkers,
are extensively applied to the ADCs since they are able to undergo fracture, increasing the acidity of
the endosomal–lysosomal pathway and the concentration of glutathione inside cells.

Acid-Cleavable Linkers

Acid-cleavable linkers, such as hydrazone, are specifically designed to remain stable at the
neutral pH of blood circulation, but undergo hydrolysis and release the cytotoxic drug in the acidic
environment of the cellular compartments. These linkers have been associated with non-specific
release of the drug in clinical studies [4].

The BR96-Doxorubicin (BR96-Dox) as an excellent example is constructed by conjugating
doxorubicin to the monoclonal antibody BR96 through an acid-cleavable hydrazone (Figure 7). After
reaching and binding to the target tumor cells, BR96-Dox is internalized through the endocytosis
into lysosomes [52]. In clinical trials, BR96-Dox has been found to not be associated with the typical
side-effect profile of native doxorubicin and could potentially deliver high doses of doxorubicin to
antigen-expressing tumors, which has been found to enable complete remission and cure subcutaneous
human breast, lung and colon tumors [53,54].
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Mylotarg, withdrawn from the US market in 2010, was the first approved ADC for treatment
of CD33-positive acute myeloid leukaemia. This ADC consists of a semisynthetic derivative of
calicheamicin and a recombinant monoclonal antibody (hP67.6) directed against the CD33 antigen
through an acid-cleavable hydrazone (Figure 8) [55].
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However, the weakness of Mylotarg is likely due to the insufficiently stable chemical linker,
which relies on a pH-dependent release mechanism, and too many of the drugs are being released in
the bloodstream [57]. Nonetheless, CMC-544 (inotuzumab ozogamicin), targeted to CD22 expressed
by B-lymphoid malignancies and covalently conjugated to calicheamicin through an acid-labile
4-(41-acetylphenoxy) butanoic acid linker, shows good stability both in human plasma and serum,
the structure of which is closely related to Mylotarg [58–60]. IMMU-110, being evaluated in a Phase I/II
study, is comprised of doxorubicin (DOX) linked to the humanized anti-CD74 monoclonal antibody
via an acid-liable hydrazone, which showed high activity against MM, and appeared to be safe in a
monkey model of MM cells [61,62]. In terms of development of DOX-based ADCs, IMMU-115 with a
hydrazone linker provides the basis for novel therapeutic approaches to B-cell malignancies [63].

Reducible Linkers

Reducible linkers take advantage of the difference in reduction potential in the intracellular
compartment versus plasma. Reduced glutathione presented in tumor cells’ cytoplasma is up to
1000-fold higher than that present in normal cells’ cytoplasma, and the tumor cells also contain
enzymes of the protein disulfide isomerase family, which may contribute to reduction of the disulfide
bond in cellular compartments [64,65]. The linkers of disulfide bonds keep conjugates intact during
systemic circulation, and are selectively cleaved by the high intracellular concentration of glutathione,
releasing the active drugs at the tumor sites from the non-toxic prodrugs [66].

Representative disulfide linker-based conjugates contain the cytotoxic maytansinoids conjugated
to the different monoclonal antibodies. In particular, huC242-SPDB-DM4 (IMGN242) is a novel ADC
comprised of huC242 antibody conjugated to the potent maytansinoid via the cleavable disulfide-linker,
which allows targeted delivery to pancreatic tumor cells and releases the potent maytansinoid in tumor
cells (Figure 9) [67,68].

Compared with uncleavable huC242-SMCC-DM1 containing a thioether linker, huC242-SPDB-DM4
with an average of three to four maytansinoid molecules showed the approximate activities in vitro [69].
However, huC242-SPDB-DM4 exhibited significantly higher activity in multiple xenograft tumor
models in vivo. The conjugate, which was linked via a disulfide bond exert an excellent effect and
clearance rate for the conjugate, was about four times faster than that for the antibody component [47].

IMGN901 consists of a potent maytansinoid attached to a CD56-binding monoclonal antibody
through a disulfide linker in a Phase II clinical trial, which is a novel CD56-targeting anticancer agent
and expressed on virtually all Merkel Cell Carcinoma (MCC) tumors (Figure 10) [70,71].
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patterns of carbohydrate in order to degrade peptides and carbohydrates. The different contents of
these enzymes between the blood and lysosomal compartment ensure a well-designed ADC undergoes
cleavage only in the lysosomal environment.

Peptide-Based Linkers

The peptide-based linkers are designed to keep ADCs intact in systemic circulation, and allow easy
release of the cytotoxic drugs upon cleavage by specific intracellular proteases, such as cathepsin B [73].
Due to unsuitable pH conditions and serum protease inhibitors, these peptide linkers show greater
systemic stability with rapid enzymatic release of the drug in the target cell, such as valine-citrulline
(Val-Cit) dipeptide linker, phenylalanine-lysine (Phe-Lys) dipeptide linker. This linker has been
utilized in many ADCs in the clinic, which displays an excellent balance between plasma stability and
intracellular protease cleavage [74].

In order to enhance the antitumor activity of CD30-directed therapy, the cytotoxic drug
monomethyl auristatin E (MMAE) was conjugated to a CD30-specific monoclonal antibody via a
protease-cleavable dipeptide linker forming the ADC brentuximab vedotin (SGN-35) [41]. It displayed
good tolerability and antitumor activity for the CD30+ hematologic malignancies in a clinical study
(Figure 11) [75].Int. J. Mol. Sci. 2016, 17, 561 11 of 22 
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Figure 11. The structural formula of MAb-Val-Cit-MMAE (SGN-35) and the supposed cleavage
mechanism after internalization into the lysosome. Adapted from reference [49,76].

Similarly, AGS-5ME consists of the anti-tubule drug MMAE and the anti-AG5-5ME mAb
composed by a XenoMouse-derived fully human IgG2k monoclonal antibody, via a Val-Cit dipeptide
linker. After attaching to the cell surface, the AGS-5ME is internalized and releases the free cytotoxic
drug by the proteolytic cleavage. At present, the AGS-5ME is in a Phase I clinical trial for the treatment
of pancreatic cancer and prostate cancer [77,78].
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β-Glucuronide Linker

Another type of enzyme-labile linker is β-glucuronide linker exploited in ADC and the cytotoxic
drug undergoes release and cleavage by β-glucuronidase, an enzyme present in lysosomes or the
tumor interstitium abundantly presenting in lysosomes, and is overexpressed in some tumors [79–81].
Having hydrophilic properties, this linker could reduce the ADC aggregation of the hydrophobic
drugs and promote the solubility of the intact ADC compared to the dipeptide-based ADC [82].

Jeffrey reported the antibody–drug conjugates linking MAbs cAC10 (anti-CD30) and h1F6
(anti-CD70) to cyclopropyl indole minor-groove binders (MGBs) via a β-glucuronide linker.
The β-glucuronide moiety does not directly link to the ADC with the payload, however, cleavage by
β-glucuronidase could trigger 1,6-elimination of the spacer liberating the free cytotoxic drug (Figure 12).
The water-soluble β-glucuronide linker is stable in plasma, effectively delivers drugs to target cells
and allows for potent activities comparable to that of a free cytotoxic drug [79].Int. J. Mol. Sci. 2016, 17, 561 12 of 22 
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The β-glucuronide linker has been utilized to conjugate multiple monoclonal antibodies in a
series of ADCs to deliver different cytotoxic drugs including auristatin derivatives MMAE, MMAF
and doxorubicin propyloxazolin (Figure 13) [84].
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The ADCs showed high levels of immunologically specific cytotoxic activity on cancer cell lines,
respectively. From the trial results, the β-glucuronide linker system shows the effective strategy for
targeting cytotoxic drug and provides ADCs with high degrees of efficacy at well-tolerated doses [85].

The first ADC linker derived from acid-labile hydrazones was designed to be cleaved inside
target cancer cells, but inevitably underwent premature spontaneous release of the drug, which caused
damage to normal tissues. The next linkers were disulfides bond and enzyme-labile linkers that
have achieved greater stability in vivo. To decrease the damage from payload to non-target tissues,
noncleavable linkers were recently developed. However, cytotoxic payloads must accommodate
substitutions while maintain the potency. Linkers can be modified to be appropriate for different modes
of metabolism or activation. For instance, conjugates containing peptide linkers or disulfide linkers
may allow a faster rate of activation and release of the cytotoxic drugs than ADCs with non-cleavable
linkers, which necessitate cleavage of two bonds at both N- and C-termini of the amino acid of
attachment. Some cytotoxic payloads are good substrates for the development of noncleavable linkers
on account of accommodating substitutions and maintaining the potency, however, other cytotoxic
payloads which can’t tolerate substitutions require a cleavable linker.

4. Attachment Sites on the Antibodies for Linkers

The attachment sites on the antibodies are important considerations for design and assessment of
ADCs, which could be attribute in large effects to the chemical groups on linkers [86]. From the clinical
trials of ADCs, application of available lysines or reduced cysteine disulfides to form the conjugates is
the predominant approach. The lysine and cysteine as the natural amino acids exist in the antibodies
with different contents and are treated with diverse methods to prepare ADCs, including heterogeneous
ADCs and homogeneous ADCs [87]. The heterogeneous ADCs were generally synthesized by utilizing
the thiol groups from reduction of cystines and primary amino group of lysines directly. However,
the heterogeneity of ADCs resulted in pharmacokinetic limitations. Comparing with heterogeneous
ADCs, homogeneous ADCs through antibody engineering and other techniques to provide the specific
sites are more stable and have better activities in vivo [86,88,89].

Generally, lysines with free amines are more prevalent than cysteines with disulfides and are
less uniformly distributed in the antibody. The primary amine in the lysines easily reacted with
N-hydroxysuccinimide (NHS) esters incorporated into the drug-linker to form stable amide and a great
number of commercial linkers depend on this method (Figure 14) [55,90]. Meanwhile, the amine of
lysine also was applied to make an amidine with a pendant thiol for connection to a linker or payload
via 2-imiothiolane (Traut’s reagent).
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forming the amides and react with Traut’s reagent forming the amidines.

Cysteines as natural amino acids in the antibodies are tethered through disulfide bridges,
whereas reducing the disulfide bonds should rarely affect functions of a monoclonal antibody [91].
Under carefully controlled conditions, the interst and disulfide bonds could be selectively reduced
by the DL-Dithiothreitol (DTT) or Tris(2-carboxyethyl)phosphine (TCEP) and provide reactive thiol
groups; meanwhile, intrachain disulfide bonds maintain their original state. The free thiol groups as
attachment sites on the antibodies can be conjugated with a small linker molecule through different
chemical reactions, such as Michael additions, a-halo carbonyl alkylations and disulfide formation
(Figure 15) [92–94].
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Tris(2-carboxyethyl)phosphine (TCEP) and the thiols react with maleimide, halogenoalkane, disulfide
or thiol compounds.

However, the maleimide-based ADCs were reported to be prone to losing payload through the
retro–Michael reaction with existence of blood thiols, particularly albumin [95,96]. The hydrolysis of
the succinimide-thioether rings in the ADCs is a promising method to avoid the retro–Michael reaction
occuring (Figure 16). The ADCs containing the hydrolyzed succinimide-thioether linker displayed
improved stability, PK exposure and efficacy as compared to the non-hydrolyzed analogs [97].

The attachment sites on the antibodies employing the natural amino acids do not require
preliminary modifications and allow for efficient reactions to take place. However, the disadvantages
of the non-specific attachment sites could lead to variability and heterogeneity among conjugates.
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The heterogeneous conjugates containing diverse drugs are difficult to purify and characterize,
which might influence ADC PK and stability [98,99].
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With the development and requirement of homogeneous ADCs, site-specific antibodies have
been obtained via the technology of interchain cysteine cross-linking, besides the recombinant
approaches [100]. In recent years, some novel cysteine-reactive functionalities have been developed to
yield site-specific antibody fragments or full antibodies via the insertion of specially designed chemical
molecules or groups into native disulfide bonds, such as pyridazinedione, dibromopyridazinedione,
dibromomaleimide, and bis-alkylating bis-sulfone groups [101–103]. Compared to analogous
heterogeneous ADCs, the homogeneous ADCs prepared from site-specific antibodies exhibit reduced
toxicity and superior efficacy in vivo [104,105].

As a consequence, significant efforts have been invested to explore diverse sites and develop
homogeneous conjugates. The antibodies with site-specific chemoselectivity not only minimize
the possibility of conjugate heterogeneity, but also have the potential to decrease payload–linker
interference with antibody–receptor recognition [44]. Insertion of an unnatural amino acid with a
bio-orthogonal reactive handle, enzymatic conjugation and insertion or mutation of cysteine residues
in the antibody sequence are the main three strategies [39].

The challenge for the next generation of ADCs is the generation of antibodies with genetically
encoded unnatural amino acids. Although attempts at the introduction of more than 30 unnatural
amino acids to antibodies have been made, only three of them with chemical handles were found to
have high value and were applied (Figure 17) [106–108].

Int. J. Mol. Sci. 2016, 17, 561 15 of 22 

 

dibromopyridazinedione, dibromomaleimide, and bis-alkylating bis-sulfone groups [101–103]. 
Compared to analogous heterogeneous ADCs, the homogeneous ADCs prepared from site-specific 
antibodies exhibit reduced toxicity and superior efficacy in vivo [104,105]. 

As a consequence, significant efforts have been invested to explore diverse sites and develop 
homogeneous conjugates. The antibodies with site-specific chemoselectivity not only minimize the 
possibility of conjugate heterogeneity, but also have the potential to decrease payload–linker 
interference with antibody–receptor recognition [44]. Insertion of an unnatural amino acid with  
a bio-orthogonal reactive handle, enzymatic conjugation and insertion or mutation of cysteine 
residues in the antibody sequence are the main three strategies [39]. 

The challenge for the next generation of ADCs is the generation of antibodies with genetically 
encoded unnatural amino acids. Although attempts at the introduction of more than 30 unnatural 
amino acids to antibodies have been made, only three of them with chemical handles were found to 
have high value and were applied (Figure 17) [106–108]. 

 
Figure 17. The commonly employed unnatural amino acids in the antibodies: para-acetyl Phe,  
para-azido Phe and propynyl-Tyr. 

A novel bioorganic conjugation approach for preparing the site-specific labeling of proteins was 
reported recently, which utilized enzymatic post-translational modification processes. Jegar et al. 
reported that bacterial transglutaminase catalyzed the primary amine of lysine residues’ ligation with 
glutamine side chains (Figure 18) [109]. 

 
Figure 18. A glutamine side chain is ligated to a lysine side chain by transglutaminase. 

Both attachment sites on the antibodies and chemical groups on the linkers not only determine 
the conjugation efficiency and production feasibility of ADCs, but also affect the stability and 
integrity of the conjugates during duction and storage as well as during clinical treatment. 

Figure 17. The commonly employed unnatural amino acids in the antibodies: para-acetyl Phe,
para-azido Phe and propynyl-Tyr.



Int. J. Mol. Sci. 2016, 17, 561 16 of 22

A novel bioorganic conjugation approach for preparing the site-specific labeling of proteins was
reported recently, which utilized enzymatic post-translational modification processes. Jegar et al.
reported that bacterial transglutaminase catalyzed the primary amine of lysine residues’ ligation with
glutamine side chains (Figure 18) [109].
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Figure 18. A glutamine side chain is ligated to a lysine side chain by transglutaminase.

Both attachment sites on the antibodies and chemical groups on the linkers not only determine
the conjugation efficiency and production feasibility of ADCs, but also affect the stability and integrity
of the conjugates during duction and storage as well as during clinical treatment.

5. Conclusions

The non-cleavable linkers, hydrazone linkers, disulfide linkers, peptide linkers and β-glucuronide
linkers are most frequently utilized in the ADCs. Significant efforts have been made in designing and
choosing suitable linkers for conjugating monoclonal antibodies and cytotoxic drugs. Those linkers
can influence the stability, toxicity, PK properties, and pharmacodynamics of ADCs. Each linker has
its advantages and disadvantages, and many factors must be considered when they are selected and
applied for determinate monoclonal antibodies and specific cytotoxic drugs. The appropriate linker
must consider the existing groups presented in the monoclonal antibody, the reactive groups in the
cytotoxic drugs, as well as the derivative functional groups. The perfect linker can guarantee sufficient
stability of cytotoxic drugs during circulation in the blood stream, effectively prevent premature drug
release, efficiently facilitate the liberation of the cytotoxic drug at the target tumor cells, and vigorously
promote the efficacy and tolerability of successful ADCs.
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