Supplementary Information

Growth, characterization, and thin film transistor application of CH$_3$NH$_3$PbI$_3$ perovskite on polymeric gate dielectric layers

Jenner H.L. Ngai,*a,b Johnny K.W. Ho,a Rocky K.H. Chan,a S.H. Cheung,a Louis M. Leungb and S.K. So*a*

a Department of Physics and Institute for Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.

b Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.

‡ Authors with equal contribution.

* Corresponding author. Email: skso@hkbu.edu.hk

1. Grazing incidence X-ray diffraction (GIXRD) analysis

Grazing incidence X-ray diffraction (GIXRD) measurements were carried out to investigate the crystallinity and microstructure of the perovskite thin films. Fig. S1 shows the grazing incidence X-ray diffraction (GIXRD) pattern of the CH$_3$NH$_3$PbI$_3$ film on different polymers. Strong peaks were observed at $2\theta = 14.1^\circ$, 28.4$^\circ$ and 31.9$^\circ$, associated to the (110), (220) and (310) diffractions of CH$_3$NH$_3$PbI$_3$ respectively. The peaks indicated that the organo-lead halide perovskite films possessed high crystallinity. The absence of the diffraction peak at 12.7$^\circ$ showed that the samples were free from the starting material PbI$_2$, which in other words indicated the reactions were driven to completeness during the formation of perovskite crystals.

Fig. S1 GIXRD pattern of CH$_3$NH$_3$PbI$_3$ perovskite films grown on different polymer substrate surfaces.