On the equitable chromatic number of complete n-partite graphs

Peter Che Bor Lam
Hong Kong Baptist University, cblam@hkbu.edu.hk

Wai Chee Shiu
Hong Kong Baptist University, wcshiu@hkbu.edu.hk

Chong Sze Tong
Hong Kong Baptist University

Zhong Fu Zhang
Lanzhou Railway Institute

This document is the authors' final version of the published article.
Link to published article: http://dx.doi.org/10.1016/S0166-218X(00)00296-1

APA Citation
On The Equitable Chromatic Number of Complete n-Partite Graphs

Peter Che Bor Lam, Wai Chee Shiu, Chong Sze Tong
Department of Mathematics, Hong Kong Baptist University
Kowloon Tong, Hong Kong

and

Zhong Fu Zhang
Lanzhou Railway Institute, Lanzhou, 730070, P.R.China

Abstract

In this note, we derive an explicit formula for the equitable chromatic number of a complete n-partite graph $K_{p_1, p_2, \ldots, p_n}$. Namely, if M is the largest integer such that

$$p_i \pmod{M} < \left\lceil \frac{p_i}{M} \right\rceil, \quad (i = 1, 2, \ldots, n)$$

then

$$\chi_e(K_{p_1, p_2, \ldots, p_n}) = \sum_{i=1}^{n} \left\lceil \frac{p_i}{M + 1} \right\rceil,$$

where $\chi_e(G)$ is the equitable chromatic number of graph G.

Key words and phrases: Complete n-partite graphs, Equitable chromatic number.

AMS 1991 Subject Classifications: 05C15, 68Q20.

1. Introduction

In this note, all graphs are simple and undirected. A graph $G = (V, E)$ is said to be equitably k-colorable, if V may be partitioned into independent sets V_1, \ldots, V_k such that for any $i \neq j$, $||V_i| - |V_j|| \leq 1$. The equitable chromatic number of G, denoted as $\chi_e(G)$, is defined as the smallest k such that G is equitably k-colorable.

In 1973, W. Meyer [5] proposed the conjecture:

$$\chi_e(G) \leq \Delta(G)$$

for simple graphs G which are neither complete graphs K_p nor odd cycles C_{2n+1}, where $\Delta(G)$ denotes the maximal degree of G. In 1970, Hajnal and Szemerédi [3] proved that if $k > \Delta(G)$, then G is equitably k-colorable. In 1983, B. Bollobás and R.K. Guy verified Meyer’s conjecture for trees [1]. Recently, K. W. Lih et al [2, 4] proved the validity of Meyer’s conjecture for the cases when $\Delta(G) \leq 3$, $\Delta(G) \geq |V|/2$, and G is a bipartite graph. Yap and Zhang [6–8] proved

This work was partially supported by RGC, Hong Kong; and FRG, Hong Kong Baptist University.
Meyer’s conjecture for outerplanar graphs, for planar graphs G with $\Delta(G) \geq 13$, and for graphs $G(V, E)$ with $\Delta(G) \geq \frac{|V|}{3} + 1$.

In this note, we derive an explicit formula for the equitable chromatic number of complete n-partite graphs ($n \geq 2$).

2. Main Results

We shall first consider a related combinatoric problem. Let n natural numbers p_1, p_2, \cdots, p_n be given. For each i, $1 \leq i \leq n$, we decompose p_i into λ_i non-negative integers $p_{ij}, j = 1, \cdots, \lambda_i$, such that

$$ p_i = \sum_{j=1}^{\lambda_i} p_{ij} $$

and $|p_{ij} - p_{kl}| \leq 1$ for $i, k = 1, \cdots, n, j = 1, \cdots, \lambda_i$, and $l = 1, \cdots, \lambda_k$. In this way, the natural numbers p_1, \cdots, p_n are said to be λ-equitably partitioned, where

$$ \lambda = \sum_{i=1}^{n} \lambda_i. $$

The minimum value of λ for which p_1, \cdots, p_n may be λ-equitably partitioned is called the equitable partition number of p_1, \cdots, p_n and is denoted by $e(p_1, \cdots, p_n)$.

Lemma 1 The equitable partition number of p_1, \cdots, p_n is $\sum_{i=1}^{n} \left\lceil \frac{p_i}{M+1} \right\rceil$, where M is the largest integer such that

$$ p_i \pmod M < \left\lceil \frac{p_i}{M} \right\rceil $$

and $0 \leq p_i \pmod M < M$, for each $i = 1, \cdots, n$.

Proof. To achieve an equitable partition of the natural numbers p_1, p_2, \cdots, p_n, each part p_{ij} must be of size M or $M+1$, for some integer M. Suppose the number p_i is decomposed into x_i numbers M and y_i numbers $M+1$. For each p_i, we write

$$ p_i = Mx_i + (M+1)y_i, $$

$$ = M(x_i + y_i) + y_i, \quad (1) $$

$$ = (M+1)(x_i + y_i) - x_i. \quad (2) $$

where $x_i, y_i \geq 0$.

2
Thus $\lambda_i = x_i + y_i$. Now if $x_i \geq M + 1$, then we may let $x_i = a(M + 1) + x_i', (a > 0)$ and rewrite

$$p_i = Mx_i + (M + 1)y_i = Mx_i' + (M + 1)(y_i + Ma)$$

Hence the size of the partitioning can be decreased to $\lambda_i = x_i' + y_i + Ma = x_i + y_i - a$. Thus for the minimum partition, we may assume that $x_i \leq M$. Equation (2) then yields

$$\left\lfloor \frac{p_i}{M+1} \right\rfloor = x_i + y_i - \left\lfloor \frac{x_i}{M+1} \right\rfloor = x_i + y_i.$$

From equation (1), we have

$$p_i \pmod{M} = y_i \pmod{M} < y_i + x_i + \left\lceil \frac{y_i}{M} \right\rceil = \left\lceil \frac{p_i}{M} \right\rceil.$$ \hspace{1cm} (3)

Clearly, $e(p_1, p_2, \cdots, p_n)$ is minimized when M is maximized. For given K_{p_1, \cdots, p_n}, $(p_i \neq 0)$, we select the largest integer M such that (3) holds for $i = 1, 2, \cdots, n$. Then

$$e(p_1, p_2, \cdots, p_n) = \min \sum_{i=1}^{n} \lambda_i \text{ (w.r.t. } p_i)$$

$$= \sum_{i=1}^{n} (x_i + y_i)$$

$$= \sum_{i=1}^{n} \left\lceil \frac{p_i}{M+1} \right\rceil.$$

Let us illustrate the proof with an example: $e(3, 5, 9)$. Clearly, the minimum set size $M \leq 3$. We start by testing the case $M = 3$. But,

$$p_2 \pmod{M} = 5 \pmod{3} = 2 \neq \left\lceil \frac{p_2}{M} \right\rceil = \left\lceil \frac{5}{3} \right\rceil = 2.$$

Next we try $M = 2$, and it is easy to check that (3) holds for $p_1 = 3$, $p_2 = 5$ and $p_3 = 9$.

Hence the equitable partition number $e(3, 5, 9)$ is $\left\lceil \frac{3}{3} \right\rceil + \left\lceil \frac{5}{3} \right\rceil + \left\lceil \frac{9}{3} \right\rceil = 6$. Specifically, the 6 partitions are (3), (2+3), and (3+3+3).
Corollary 2 Suppose M is the largest integer such that
\[p_i \text{ (mod } M) < \left\lceil \frac{p_i}{M} \right\rceil \quad \text{for } i = 1, \cdots, n. \]

Then
\[\chi_e(K_{p_1, p_2, \cdots, p_n}) = \sum_{i=1}^{n} \left\lceil \frac{p_i}{M+1} \right\rceil. \]

3. Remarks

Let $G = K_{p_1, p_2, \cdots, p_n}$ be a complete n-partite graph, where $p_1 \leq p_2 \leq \cdots \leq p_n$. The order of G is then $N = p_1 p_2 \cdots p_n$. The proof of Lemma 1 provides an efficient algorithm for the explicit calculation of the equitable partition number of p_1, p_2, \cdots, p_n and hence the equitable chromatic numbers of G. Suppose $M > p_1/2$ and $M + 1 \neq p_1$. Then (3) does not hold for $i = 1$. Hence we need only to consider the case $M \leq p_1/2$ or $M + 1 = p_1$. Consequently, the total number of steps required to determine the largest M to satisfy (3) is approximately $p_1 n/2$.

4. Acknowledgement

The authors wish to thank the referees for their help and suggested amendments to this note.

References

