Bioassay-guided isolation and structural modification of the anti-TB resorcinols from Ardisia gigantifolia

Yi-Fu Guan
Hong Kong Baptist University

Xun Song
Hong Kong Baptist University

Ming-Hua Qiu
Chinese Academy of Sciences

Shi-Hong Luo
Chinese Academy of Sciences

Bao-Jie Wang
University of Illinois at Chicago

See next page for additional authors

This document is the authors' final version of the published article.
Link to published article: http://dx.doi.org/10.1111/cbdd.12756

Recommended Citation

Guan, Yi-Fu, Xun Song, Ming-Hua Qiu, Shi-Hong Luo, Bao-Jie Wang, Nguyen Van Hung, Nguyen M. Cuong, Djuja Doel Soejarto, Harry H. S. Fong, Scott G. Franzblau, Sheng-Hong Li, Zhen-Dan He, and Hong-Jie Zhang. "Bioassay-guided isolation and structural modification of the anti-TB resorcinols from Ardisia gigantifolia." *Chemical Biology and Drug Design* 88.2 (2016): 293-301.
Authors
Yi-Fu Guan, Xun Song, Ming-Hua Qiu, Shi-Hong Luo, Bao-Jie Wang, Nguyen Van Hung, Nguyen M. Cuong, Djaja Doel Soejarto, Harry H. S. Fong, Scott G. Franzblau, Sheng-Hong Li, Zhen-Dan He, and Hong-Jie Zhang

This journal article is available at HKBU Institutional Repository: https://repository.hkbu.edu.hk/hkbu_staff_publication/6261
Bioassay-Guided Isolation and Structural Modification of the Anti-TB Resorcinols from Ardisia gigantifolia

Yi-Fu Guan 1,2†, Xun Song 1,3†, Ming-Hua Qiu 4, Shi-hong Luo 4, Bao-Jie Wan 5, Nguyen Van Hung 6, Nguyen M. Cuong 7, D. Doel Soejarto 8, Harry H.S. Fong 8, Scott G. Franzblau 5, Sheng-Hong Li 4, Zhen-Dan He 3,*, Hong-Jie Zhang 1,*

1 School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, P. R. China
2 HKBU Institute of Research and Continuing Education, Shenzhen 518057, P. R. China
3 Department of Pharmacy, School of Medicine, Shenzhen University, Shenzhen 518060, P. R. China
4 State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, P.R. China
5 Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
6 Institute of Marine Biochemistry of the Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet road, Cau Giay, Hanoi, Vietnam
7 Cuc Phuong National Park, Nho Quan District, Ninh Binh Province, Vietnam.
8 Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA

†These authors contributed equally to this work.

*Corresponding authors: Hongjie Zhang, zhanghj@hkbu.edu.hk; Zhendan He, hezhendan@126.com.
Tuberculosis (TB) is a highly contagious disease mainly caused by *Mycobacterium tuberculosis* H$_{37}$R$_{V}$. Antitubercular (anti-TB) bioassay-guided isolation of the CHCl$_3$ extract of the leaves and stems of the medicinal plant *Ardisia gigantifolia* led to the isolation of two anti-TB 5-alkylresorcinols, 5-(8Z-heptadecenyl) resorcinol (1) and 5-(8Z-pentadecenyl) resorcinol (2). We further synthesized 15 derivatives based on these two natural products. These compounds (natural and synthetic) were evaluated for their anti-TB activity against *M. tuberculosis* H$_{37}$R$_{V}$. Resorcinols 1 and 2 exhibited anti-TB activity with MIC values at 34.4 μM and 79.2 μM in MABA assay, respectively, and 91.7 μM and 168.3 μM in LORA assay, respectively. Among these derivatives, compound 8 was found to show improved anti-TB activity than its synthetic precursor (2) with MIC values at 42.0 μM in MABA assay and 100.2 μM in LORA assay. The active compounds should be regarded as new hits for further study as a novel class of anti-TB agents. The distinct structure–activity correlations of the parent compound were elucidated based on these derivatives.

Keywords: *Ardisia gigantifolia*; isolation and structure identification; resorcinols; anti-TB activity; *Mycobacterium tuberculosis* H$_{37}$R$_{V}$; structural modification
Tuberculosis (TB) is a highly contagious bacterial disease most commonly manifesting as a pulmonary infection and mainly caused by *M. tuberculosis* (1). The World Health Organization (WHO) estimates that there were about 11 million prevalent cases of TB in 2013, equivalent to 159 cases per 10 million population and lead up to 1.5 million deaths (2).

The drugs used for treating TB are more than 40 years old and are far from ideal. Drug-resistant TB (DR-TB) poses a major threat for the control of TB worldwide. In 2013, there were an estimated 480,000 new cases of multi-drug-resistant TB (MDR-TB) worldwide and approximately 210,000 deaths (2). In the heavy MDR-TB burden countries, the average duration of hospital stay ranged from 7 to 240 days, with a median of 90 days (2). Two new drugs have been approved for the treatment of MDR-TB under specific conditions: bedaquiline and delamanid in 2012 (3). However, these two drugs are the first compounds to be approved for use in TB treatment in nearly 40 years, and the only ones ever to be released specifically for the treatment of MDR-TB (4). This demands our continuous efforts to discover new anti-TB therapeutic agents that improve the treatment of multi-drug-resistant and extensively drug-resistant strains and shortens the total duration of treatment.

Plant compounds, known for their enormous numbers and their remarkable structural diversity, are considered an excellent source for exploration of drug lead compounds, and have received considerable attention as potential anti-TB agents (5, 6). *Ardisia gigantifolia* Stapf (Primulaceae; previously, Myrsinaceae) collected from Vietnam for the present research (see below) is a shrub growing in the shade and wet places of valley and hillsides and is widely distributed in Southeast Asia including Vietnam, Thailand, Malaysia, Indonesia and Southern provinces of China (7, 8). The whole plant of this species has been used in folk medicine to eliminate blood stasis, disperse swelling, improve blood circulation, and also as an analgesic (9). This plant was investigated as part of our International Cooperative Biodiversity Group (ICBG) project, which was designed to address the related issues of biodiversity conservation, economic growth, and promotion of health through the discovery of anticancer, anti-HIV, antimalarial, and anti-TB natural products through collaboration with institutions in Vietnam, Laos, and the United States (10). This plant was found to be one of the first anti-TB plant leads in our efforts to discover anti-TB agents from
plants of the tropical forests of Vietnam and Laos. The current paper describes the isolation, structure elucidation, derivatization of the active natural products and biological evaluation of the pharmacological activities of these compounds.

Experiment

General Experimental Procedures

NMR spectra were recorded on a Bruker DPX-300 MHz or a Bruker DPX-400 MHz spectrometer. Chemical shifts (δ) were expressed in ppm with reference to the solvent signals (CDCl₃; ¹H: 7.24 ppm; ¹³C: 77.00 ppm), and coupling constants (J) were reported in Hz. All NMR experiments were obtained by using standard pulse sequences supplied by the vendor. Column chromatography was carried out on silica gel (200–400 mesh, Natland International Corporation). Reversed-phase flash chromatography was accomplished with RP-18 silica gel (40–63 μm, EM Science). Thin-layer chromatography was performed on Whatman glass-backed plates coated with 0.25 mm layers of silica gel 60. HR-TOF-MS spectra were recorded on a Micromass QTOF-2 spectrometer. All reagents were purchased from Sigma-Aldrich Chemical Co. and used without further purification. All solvents were reagent grade or HPLC grade.

Plant Material

Leaf and stem sample (SVA0214) of *Ardisia gigantifolia* was recollected in Cuc Phuong National Park, Nho Quan District, Ninh Binh Province, Vietnam, on October 21, 2001, from the same location where the original primary active sample (SV0214) was collected on March 20, 1999. The exact location was forest floor at northeast side of Bong at 500 m altitude, in a primary forest on a steep slope, 20° 21′ 13″ N, 105° 35′ 48″ E. It is a shrub 3 m tall, with the upper leaf surface dark green, lower surface greenish purple, the peduncle green, turning purple toward the tip, bearing purple flower buds with white top set on a purple pedicel. A voucher herbarium specimen of the recollected sample (*Soejarto et al. 11809*) and that of the primary sample (*Soejarto et al. 10628*) have been deposited at each of the following institutions: Cuc Phuong National Park Herbarium (CPNP) in Nho Quan, Ninh Binh, Vietnam; Herbarium of the Department of Botany (HN) of the Vietnam Academy of Science and Technology, Hanoi, Vietnam; and at the J. D. Searle Herbarium of the Field Museum (F), Chicago, USA.
Extraction and Isolation

The dried and milled leaves and stems (5.2 kg) were extracted with CHCl₃ (×3) to yield an extract (37.9 g), which was subsequently defatted with n-hexane and partitioned with CHCl₃. The CHCl₃-soluble fraction (33.0 g) was chromatographed over a silica gel column (400 g) and eluted by gradient elution with petroleum ether/EtOAc and EtOAc/MeOH to obtain 8 fractions (F₁-F₈). Fraction F₂ (5.15 g) demonstrated 91% inhibition against M. tuberculosis H₃⁷Rv at 50 µg/mL, and was further chromatographed on a silica-gel column (100 g) by gradient elution with CHCl₃ and increasing concentration of Me₂CO to yield 6 fractions (F₉-F₁₄). Fraction F₁₁ demonstrated anti-TB activity against M. tuberculosis H₃⁷Rv with an MIC value of 12.5 µg/ml. This fraction (0.72 g) was subjected to flash column chromatography on a C₁₈ reverse phase (RP-18, 30 g) column. Subsequent gradient elution with H₂O and increasing concentration of MeCN yielded 5-(8Z-heptadecenyl) resorcinol (1, 0.15 g) and 5-(8Z-pentadecenyl) resorcinol (2, 0.26 g) (Figure 1).

Preparation of the Derivatives (3-14) of Compounds 1 and 2

To a solution of compound 1 or 2 (5.0-8.0 mg) and corresponding selected acyl chloride or p-toluenesulfonyl chloride (TsCl) (3 eq) in CH₂Cl₂ (3 mL), triethylamine (TEA) (8 eq) and catalytic amount of 4-dimethylaminopyridine (DMAP) at 0 °C were added. The resulting reaction mixture was stirred at room temperature overnight. Volatile components in the reaction mixtures were removed by evaporation under reduced pressure, and the resulting residue was purified by silica gel column chromatography to afford ester derivatives 3-14, respectively.

Preparation of Compounds 15-16 (11)

To a stirred suspension consisting of compound 14 (5.0 mg), silver acetate (AgOAc) (4.0 mg) and water (1.6 mg) in glacial acetic acid (5 mL), iodine (2.4 mg) was added. The resultant yellow mixture was stirred for 24 hr at room temperature and then filtered through a cotton wool plug to remove insoluble material. The filtrate was poured into CH₂Cl₂ (20 mL) in a separatory funnel, which was washed successively with H₂O (2×5 mL) and saturated aqueous sodium bicarbonate (NaHCO₃) (5 mL). The aqueous layers were combined and extracted with CH₂Cl₂ (20 mL). The resulting organic layer was added to the original CH₂Cl₂ and further washed with brine (7 mL).
and then dried with sodium sulfate (Na₂SO₄). Removal of the solvent under reduced pressure gave an orange residue.

A solution of the orange residue, potassium carbonate (K₂CO₃, 5.5 mg) in MeOH and H₂O (5 mL, V_MeOH : V_H₂O = 10:1) was stirred at room temperature overnight. The solvent was removed under reduced pressure, and the residue was subjected to silica gel column chromatography to give diols 15-16.

Preparation of compound 17 (12)

Sodium periodate (NaIO₄, 1.29 g, 6.0 mmol) was dissolved in 2.5 mL of hot water (~70 °C). To this hot solution, silica gel (230-400 mesh, 5 g) was added with vigorous swirling and shaking to afford a free-flowing powder. To a vigorously stirred suspension of this silica gel-supported NaIO₄ reagent (9 mg) in CH₂Cl₂ (2 mL), a solution of diol 16 (3 mg) in CH₂Cl₂ (3 mL) was added. The mixture was stirred for 30 min and then filtered through a sintered glass funnel. The retained silica gel was thoroughly washed with CH₂Cl₂ (3×10 mL) and added to the filtrate. In vacuo removal of the organic solvent from the filtrate afforded aldehyde 17.

Compound 3, Amount, 2.5 mg; yield, 85%; colourless gum; ¹H NMR (Figure S1) (400 MHz, CDCl₃) δ: 8.04 (4H, d, J = 9.1 Hz), 6.93 (3H, brs), 6.69 (4H, d, J = 9.1 Hz), 5.38-5.30 (2H, m), 3.08 (12H, s), 2.64 (2H, t, J = 7.6 Hz), 2.05-1.97 (4H, m), 1.68-1.59 (2H, m), 1.38-1.22 (20H, m), 0.88 (3H, t, J = 7.0 Hz);

¹³C NMR (Figure S2) (100 MHz, CDCl₃) δ: 165.3, 153.6, 151.5, 145.1, 132.0, 131.2, 129.9, 129.8, 118.9, 115.9, 113.2, 110.7, 110.6, 40.0, 35.8, 31.9, 31.8, 31.0, 29.7, 29.5, 29.4, 29.3, 29.0, 27.2, 22.6, 14.1; HRTOF positive ESIMS m/z 641.4316 [M+1]+, (calcd for C₄₁H₅₇N₂O₄, 641.4313).

Compound 4, Amount, 3.0 mg; yield, 90%; colourless gum; ¹H NMR (Figure S3) (400 MHz, CDCl₃) δ: 8.04 (4H, d, J = 8.9 Hz), 6.93 (3H, brs), 6.69 (4H, d, J = 9.0 Hz), 5.38-5.32 (2H, m), 3.08 (12H, s), 2.64 (2H, t, J = 7.9 Hz), 2.05-1.97 (4H, m), 1.68-1.61 (2H, m), 1.33-1.28 (16H, m), 0.88 (3H, t, J = 7.0 Hz); ¹³C NMR (Figure S4) (100 MHz, CDCl₃) δ: 165.3, 153.7, 151.6, 145.0, 132.0, 129.9, 118.9, 115.9, 113.3, 110.7, 40.0, 35.8, 31.8, 31.0, 29.8, 29.7, 29.4, 29.3, 29.2, 29.0, 27.2, 22.7, 14.1; HRTOF positive ESIMS m/z 613.3973 [M+1]+, (calcd for C₃₉H₅₃N₂O₄, 613.4000).
Compound 5, Amount, 2.0 mg; yield, 70%; colourless gum; 1H NMR (Figure S5)

(400 MHz, CDCl$_3$) δ: 7.15 (2H, dd, $J = 4.0, 1.8$ Hz), 6.91 (3H, brs), 6.88 (2H, dd, $J =$ 2.2, 2.2 Hz), 6.19 (2H, dd, $J =$ 4.1, 2.5 Hz), 5.36-5.32 (2H, m), 3.96 (6H, s), 2.63 (2H, t, $J =$ 7.6 Hz), 2.08-1.93 (4H, m), 1.69-1.58 (2H, m), 1.38-1.22 (20H, m), 0.88 (3H, t, $J =$ 6.2 Hz); 13C NMR (Figure S6) (100 MHz, CDCl$_3$) δ: 159.3, 150.8, 145.3, 130.6, 129.9, 121.4, 119.2, 119.0, 113.3, 108.3, 36.9, 35.7, 31.7, 31.0, 29.7, 29.6, 29.5, 29.4, 29.3, 29.0, 27.2, 22.6, 14.1; HRTOF positive ESIMS m/z 561.3660

$[M+1]^+$, (calcd for C$_{33}$H$_{49}$N$_2$O$_4$, 561.3687).

Compound 6, Amount, 1.8 mg; yield, 75%; colourless gum; 1H NMR (Figure S7)

(400 MHz, CDCl$_3$) δ: 7.16 (2H, dd, $J = 4.0, 1.8$ Hz), 6.91 (3H, brs), 6.88 (2H, dd, $J =$ 2.2, 2.2 Hz), 6.19 (2H, dd, $J =$ 4.0, 2.5 Hz), 5.35 (2H, m), 3.96 (6H, s), 2.63 (2H, t, $J =$ 7.5 Hz), 2.08-1.96 (4H, m), 1.69-1.59 (2H, m), 1.41-1.10 (16H, m), 0.88 (3H, t, $J =$ 7.0 Hz); 13C NMR (Figure S8) (100 MHz, CDCl$_3$) δ: 159.3, 150.8, 145.2, 130.6, 129.9, 129.8, 121.4, 119.2, 119.0, 113.3, 108.3, 36.9, 35.7, 31.7, 30.9, 29.7, 29.3, 29.2, 29.0, 27.2, 22.6, 14.1; HRTOF positive ESIMS m/z 533.3376 $[M+1]^+$, (calcd for C$_{33}$H$_{45}$N$_2$O$_4$, 533.3374).

Compound 7, Amount, 1.5 mg; yield, 65%; colourless gum; 1H-NMR (Figure S9)

(400 MHz, CDCl$_3$) δ: 9.40 (2H, d, $J =$ 1.5 Hz), 8.87 (2H, dd, $J =$ 4.8, 1.5 Hz), 8.51-8.40 (2H, m), 7.48 (2H, dd, $J =$ 8.0, 4.8 Hz), 7.05 (1H, d, $J =$ 1.9 Hz), 7.03 (2H, brs), 5.38-5.30 (2H, m), 2.69 (2H, t, $J =$ 7.8 Hz), 2.04-1.98 (4H, m), 1.71-1.62 (2H, m), 1.40-1.21 (20H, m), 0.88 (3H, t, $J =$ 7.1 Hz); 13C NMR (Figure S10) (100 MHz, CDCl$_3$) δ: 163.5, 154.1, 151.4, 150.7, 146.0, 137.6, 129.9, 129.8, 125.4, 123.5, 119.3, 112.7, 35.8, 31.7, 30.9, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 29.0, 27.2, 22.6, 14.1; HRTOF positive ESIMS m/z 557.3367 $[M+1]^+$, (calcd for C$_{33}$H$_{45}$N$_2$O$_4$, 557.3374).

Compound 8, Amount, 2.0 mg; yield, 60%; colourless gum; 1H NMR (Figure S11)

(400 MHz, CDCl$_3$) δ: 9.39 (2H, s), 8.87 (2H, d, $J =$ 4.8 Hz), 8.46 (2H, d, $J =$ 8.0 Hz), 7.49 (2H, dd, $J =$ 7.8, 4.9 Hz), 7.05 (1H, brs), 7.03 (2H, brs), 5.47-5.20 (2H, m), 2.69 (2H, t, $J =$ 7.8 Hz), 2.10-1.94 (4H, m), 1.74-1.56 (2H, m), 1.42-1.18 (16H, m), 0.87 (3H, t, $J =$ 6.3 Hz); 13C NMR (Figure S12) (100 MHz, CDCl$_3$) δ: 163.5, 154.1, 151.3, 150.7, 146.0, 137.6, 130.0, 129.7, 125.4, 123.5, 119.3, 112.7, 35.7, 31.7, 30.9, 29.7, 29.3, 29.2, 29.1, 28.9, 27.2, 27.1, 22.6, 14.1; HRTOF positive ESIMS m/z 529.3061 $[M+1]^+$, (calcd for C$_{33}$H$_{41}$N$_2$O$_4$, 529.3062).
Compound 9, Amount, 2.4 mg; yield, 85%; colourless gum; 1H NMR (Figure S13)

(400 MHz, CDCl$_3$) δ: 8.88 (4H, d, $J = 5.1$ Hz), 8.01 (4H, d, $J = 5.9$ Hz), 7.03 (1H, brs), 7.02 (2H, brs), 5.42-5.26 (2H, m), 2.68 (2H, t, $J = 7.8$ Hz), 2.12-1.91 (4H, m), 1.71-1.58 (2H, m), 1.37-1.23 (20H, m), 0.88 (3H, t, $J = 6.5$ Hz); 13C NMR (Figure S14) (100 MHz, CDCl$_3$) δ: 163.4, 150.9, 150.7, 146.2, 136.6, 129.9, 129.8, 123.2, 119.3, 112.5, 35.8, 31.8, 30.9, 29.7, 29.5, 29.4, 29.3, 29.2, 29.0, 27.7, 27.2, 22.6, 14.1; HRTOF positive ESIMS m/z 557.3371 [M+1]$^+$, (calcd for C$_{35}$H$_{45}$N$_2$O$_4$, 557.3374).

Compound 10, Amount, 1.2 mg; yield, 30%; colourless gum; 1H-NMR (Figure S15)

(400 MHz, CDCl$_3$) δ: 8.86 (2H, d, $J = 5.7$ Hz), 8.00 (2 H, dd, $J = 4.4, 1.6$ Hz), 6.62 (1H, dd, $J = 1.8, 1.8$ Hz), 6.61 (1H, dd, $J = 2.0, 2.0$ Hz), 6.56 (1 H, dd, $J = 2.2, 2.2$ Hz), 5.38-5.32 (2H, m), 5.22 (1 H, brs), 2.58 (2H, t, $J = 7.6$ Hz), 2.04-1.98 (4H, m), 1.66-1.59 (2H, m), 1.36-1.23 (16H, m), 0.88 (3H, t, $J = 6.9$ Hz); HRTOF positive ESIMS m/z 424.2836 [M+1]$^+$, (calcd for C$_{27}$H$_{38}$NO$_3$, 424.2846).

Compound 11, Amount, 3.0 mg; yield, 95%; colourless gum; 1H-NMR (Figure S16)

(400 MHz, CDCl$_3$) δ: 8.20 (4H, d, $J = 7.6$ Hz), 7.64 (2H, dd, $J = 7.4, 7.4$ Hz), 7.52 (4H, dd, $J = 7.7, 7.7$ Hz), 7.00 (1H, d, $J = 1.7$ Hz), 6.99 (2H, brs), 5.45-5.26 (2H, m), 2.67 (2H, t, $J = 7.9$ Hz), 2.06-1.96 (4H, m), 1.69-1.62 (2H, m), 1.37-1.23 (20H, m), 0.88 (3H, t, $J = 6.5$ Hz); 13C-NMR (Figure S17) (100 MHz, CDCl$_3$) δ: 164.9, 151.2, 145.6, 133.6, 130.2, 129.9, 129.4, 128.6, 119.1, 112.9, 35.8, 31.7, 31.0, 29.7, 29.5, 29.4, 29.3, 29.0, 27.2, 22.6, 14.1; HRTOF positive ESIMS m/z 577.3301 [M+Na]$^+$, (calcd for C$_{37}$H$_{46}$NaO$_4$, 577.3288).

Compound 12, Amount, 8 mg; yield, 90%; colourless gum; 1H-NMR (Figure S18)

(400 MHz, CDCl$_3$) δ: 8.20 (4H, d, $J = 7.1, 1.4$ Hz), 7.67-7.60 (2H, m), 7.51 (4H, dd, $J = 7.4, 7.4$ Hz), 7.00 (1H, d, $J = 2.0$ Hz), 6.99 (2H, d, $J = 2.0$ Hz), 5.40-5.30 (2H, m), 2.69 (2H, t, $J = 7.7$ Hz), 2.07-1.95 (4H, m), 1.70-1.61 (2H, m), 1.41-1.21 (16H, m), 0.87 (3H, t, $J = 6.9$ Hz); HRTOF positive ESIMS m/z 527.3145 [M+1]$^+$, (calcd for C$_{35}$H$_{43}$O$_4$, 527.3156).

Compound 13, Amount, 2.2 mg; yield, 85%; colourless gum; 1H NMR (Figure S19)

(400 MHz, CDCl$_3$) δ: 7.64 (4H, d, $J = 8.2$ Hz), 7.31 (4H, d, $J = 8.1$ Hz), 6.69 (2H, brs), 6.45 (1H, brs), 5.46-5.28 (2H, m), 2.69-2.40 (8H, m), 2.10-1.94 (4H, m), 1.40-1.20 (22H, m), 0.88 (3H, t, $J = 6.1$ Hz); 13C NMR (Figure S20) (100 MHz, CDCl$_3$) δ: ...
Compound 14, Amount, 7.5 mg; yield, 90%; colourless gum; 1H NMR (Figure S21)
(400 MHz, CDCl$_3$) δ: 7.64 (4H, d, $J = 8.3$ Hz), 7.32 (4H, d, $J = 8.0$ Hz), 6.70 (2H, d, $J = 2.2$ Hz), 6.45 (1H, dd, $J = 2.2, 2.2$ Hz), 5.41-5.30 (2H, m), 2.46-2.42 (8H, m), 2.10-1.95 (4H, m), 1.43-1.10 (18H, m), 0.88 (3H, t, $J = 7.0$ Hz); HRTOF positive ESIMS m/z 677.2931 [M+Na]$^+$, (calcd for C$_{27}$H$_{50}$NaO$_6$S$_2$, 677.2941).

Compound 15, Amount, 1.1 mg; yield, 25%; colourless gum; 1H-NMR (Figure S22)
(400 MHz, CDCl$_3$) δ: 7.72 (2H, d, $J = 8.3$ Hz), 7.31 (2H, d, $J = 8.0$ Hz), 6.54 (1H, d, $J = 1.8$ Hz), 6.34 (2H, d, $J = 1.7$ Hz), 5.61 (1H, brs), 3.67-3.56 (2H, m), 2.50-2.39 (5H, m), 2.01-1.85 (2H, m), 1.52-1.41 (4H, m), 1.36-1.19 (16H, m), 0.88 (3H, t, $J = 6.8$ Hz); HRTOF positive ESIMS m/z 529.2585 [M+Na]$^+$, (calcd for C$_{28}$H$_{42}$O$_6$NaS, 529.2594).

Compound 16, Amount, 3.5 mg; yield, 35%; colourless gum; 1H-NMR (Figure S23)
(400 MHz, CDCl$_3$) δ: 7.65 (4H, d, $J = 8.4$ Hz), 7.30 (4H, d, $J = 8.1$ Hz), 6.72 (2H, d, $J = 2.1$ Hz), 6.44 (1H, dd, $J = 2.2, 2.2$ Hz), 3.64-3.57 (2H, m), 2.48-2.41 (8H, m), 1.87-1.78 (2H, m), 1.46-1.38 (4H, m), 1.33-1.18 (16H, m), 0.88 (3H, t, $J = 6.7$ Hz); HRTOF positive ESIMS m/z 683.2679 [M+Na]$^+$, (calcd for C$_{35}$H$_{48}$NaO$_8$S$_2$, 683.2683).

Compound 17, Amount, 1.5 mg; yield, 95%; colourless gum; 1H-NMR (Figure S24)
(400 MHz, CDCl$_3$) δ: 9.77 (1H, t, $J = 1.8$ Hz), 7.65 (4H, d, $J = 8.4$ Hz), 7.30 (4H, d, $J = 8.0$ Hz), 6.72 (2H, d, $J = 2.2$ Hz), 6.43 (1H, dd, $J = 2.2, 2.2$ Hz), 2.46-2.41 (10H, m), 1.64-1.60 (2H, m), 1.42-1.36 (2H, m), 1.31-1.23 (6H, m); 13C NMR (Figure S25)
(100 MHz, CDCl$_3$) δ: 202.8, 149.5, 145.8, 145.7, 132.0, 129.9, 128.5, 121.2, 114.1, 43.9, 35.3, 30.6, 29.1, 29.0, 28.7, 22.0, 21.8; HRTOF positive ESIMS m/z 545.1657 [M+H]$^+$, (calcd for C$_{28}$H$_{32}$O$_7$S$_2$, 545.1662).

Anti-TB Activity Bioassays

Extracts, fractions, purified compounds and derivatives were subjected to in vitro assays. Primary screening was conducted at 100 μg/mL against M. tuberculosis H$_{37}$Rv (ATCC 27294) using the Microplate Alamar Blue Assay (MABA) and Low Oxygen
Recovery Assay (LORA), according to the procedures described by Collins (13) and Cho (14), respectively. Samples showing ≥90% inhibition in the primary screening were considered active and then re-tested at lower concentrations against *M. tuberculosis* H37Rv in order to determine the actual MIC. The MIC is defined as the lowest concentration effecting a reduction in fluorescence or luminescence of 90% with respect to untreated controls.

Results and Discussion

Isolation of Resorcinols 1 and 2

The CHCl₃ extract made from the initially collected leaves and stems of *Ardisia gigantifolia* demonstrated anti-TB activity with an MIC value of 25 µg/mL. A larger quantity of the leaf and stem samples was subsequently recollected from the same location to isolate the active compounds. The dried sample (5.2 kg) was milled and extracted with CHCl₃, followed by *in vacuo* evaporation to afford a dried extract (37.9 g). Through bioassay-guided fractionation of the CHCl₃ extract by repeated column chromatography on silica gel, fraction F11 was identified as the anti-TB fraction, with an MIC value of 12.5 µg/mL against *M. tuberculosis* H37Rv. Further separation of F11 using RP-18 silica gel led to the isolation of the anti-TB compounds 5-(8Z-heptadecenyl) resorcinol (1) and 5-(8Z-pentadecenyl) resorcinol (2) (Figure 1).

![Chemical structures of 1 and 2](image)

Figure 1: Chemical structures of 1 and 2.
Table 1. 1H (300 MHz) and 13C (75 MHz) NMR data for compounds 1 and 2 (in CDCl$_3$, δ in ppm, J in Hz).

<table>
<thead>
<tr>
<th>Position</th>
<th>δ_H (mult)a</th>
<th>δ_C (mult)b</th>
<th>δ_H (mult)a</th>
<th>δ_C (mult)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>156.9 s</td>
<td>156.4 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6.18 (1H, brs)</td>
<td>100.2 d</td>
<td>6.17 (1H, brs)</td>
<td>100.2 d</td>
</tr>
<tr>
<td>3</td>
<td>156.9 s</td>
<td></td>
<td>156.4 s</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6.24 (2H, brs)</td>
<td>108.1 d</td>
<td>6.25 (2H, brs)</td>
<td>108.1 d</td>
</tr>
<tr>
<td>5</td>
<td>146.2 s</td>
<td>146.2 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6.24 (2H, brs)</td>
<td>108.1 d</td>
<td>6.25 (2H, brs)</td>
<td>108.1 d</td>
</tr>
<tr>
<td>1'</td>
<td>2.35 (2H, t, 7.5)</td>
<td>35.84 t</td>
<td>2.45 (2H, t, 7.5)</td>
<td>35.84 t</td>
</tr>
<tr>
<td>2'</td>
<td>1.56 (2H, brs)</td>
<td>31.79 t</td>
<td>1.54 (2H, brs)</td>
<td>31.79 t</td>
</tr>
<tr>
<td>3'</td>
<td>1.27 (10×2H, m)</td>
<td>29.31 t</td>
<td>1.29 (8×2H, m)</td>
<td>29.29 t</td>
</tr>
<tr>
<td>4'</td>
<td>1.27 (10×2H, m)</td>
<td>29.77 t</td>
<td>1.29 (8×2H, m)</td>
<td>29.41 t</td>
</tr>
<tr>
<td>5'</td>
<td>1.27 (10×2H, m)</td>
<td>29.77 t</td>
<td>1.29 (8×2H, m)</td>
<td>29.74 t</td>
</tr>
<tr>
<td>6'</td>
<td>1.27 (10×2H, m)</td>
<td>31.06 t</td>
<td>1.29 (8×2H, m)</td>
<td>29.74 t</td>
</tr>
<tr>
<td>7'</td>
<td>2.01 (2×2H, m)</td>
<td>27.23 t</td>
<td>1.29 (8×2H, m)</td>
<td>31.05 t</td>
</tr>
<tr>
<td>8'</td>
<td>5.35 (2×1H, m)</td>
<td>129.9 d</td>
<td>2.01 (2×2H, m)</td>
<td>27.24 t</td>
</tr>
<tr>
<td>9'</td>
<td>5.35 (2×1H, m)</td>
<td>129.9 d</td>
<td>5.34 (2×1H, m)</td>
<td>130.0 t</td>
</tr>
<tr>
<td>10'</td>
<td>2.01 (2×2H, m)</td>
<td>27.23 t</td>
<td>5.34 (2×1H, m)</td>
<td>129.8 t</td>
</tr>
<tr>
<td>11'</td>
<td>1.27 (10×2H, m)</td>
<td>31.06 t</td>
<td>2.01 (2×2H, m)</td>
<td>27.24 t</td>
</tr>
<tr>
<td>12'</td>
<td>1.27 (10×2H, m)</td>
<td>29.77 t</td>
<td>1.29 (8×2H, m)</td>
<td>29.41 t</td>
</tr>
<tr>
<td>13'</td>
<td>1.27 (10×2H, m)</td>
<td>29.77 t</td>
<td>1.29 (8×2H, m)</td>
<td>31.94 t</td>
</tr>
<tr>
<td>14'</td>
<td>1.27 (10×2H, m)</td>
<td>29.56 t</td>
<td>1.29 (8×2H, m)</td>
<td>22.67 t</td>
</tr>
<tr>
<td>15'</td>
<td>1.27 (10×2H, m)</td>
<td>31.94 t</td>
<td>0.88 (3H, t, 6.2)</td>
<td>14.5 q</td>
</tr>
<tr>
<td>16'</td>
<td>1.27 (10×2H, m)</td>
<td>22.67 t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17'</td>
<td>0.88 (3H, t, 6.2)</td>
<td>14.5 q</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Multiplicities in parentheses represent: brs (broad singlet), d (doublet), m (multiplicity), t (triplet).

b Multiplicities represent: s (quaternary carbon), d (CH), t (CH$_2$), and q (CH$_3$).
Compounds 1 and 2 were obtained as colorless gums and showed very similar NMR data (Table 1), suggesting that they have similar structures. Both compounds contain an aromatic ring, a C-C double bond, multi-methylene and a methyl as evidenced by the 1H and 13C-NMR spectral data. Compound 1 was shown to have 14 methylenes, two methylenes more than 2 according to the analysis of the HR-TOF-MS (1: [M-H]$^-$ m/z 345.2789, calcd. 345.2799, C$_{23}$H$_{37}$O$_2$; 2: [M-H]$^-$ m/z 317.2483, calcd. 317.2486, C$_{21}$H$_{33}$O$_2$) and the NMR data. The coupling patterns in the downfield region [1: δ_H 6.18 (1H, brs, 4-H), 6.24 (2H, brs, 2, 6-H); 2: δ_H 6.17 (1H, brs, 4-H), 6.25 (2H, brs, 2, 6-H)] showed that both compounds have a 1, 3, 5-substituted benzene ring. Compounds 1 and 2 were determined to be a 5-alkylresorcinols with a double bond in the side chain, based on the above data. In comparison with the literature data, 1 and 2 were thus identified as 5-(8Z-heptadecenyl) resorcinol and 5-(8Z-pentadecenyl) resorcinol, respectively (11, 15-17).

Preparation of Resorcinols 1 and 2 Derivatives

In an attempt to improve the biological activity of the isolated natural resorcinols, we initiated a structural modification effort. To that end, 15 derivatives were prepared by esterification of the phenolic hydroxyl groups and hydroxylation of the double bonds of compounds 1 and 2. As depicted in Scheme 1, the phenolic hydroxyl groups of the resorcinols were esterified with aromatic acyl chlorides including heterocyclic carbonyl chlorides to afford ester derivatives 3-14 in 30-95% yield. The diester 9 was prepared by treatment of 1 with 3 equivalents of isonicotinic acid chloride, but the monoester 10 was obtained by treatment of the resorcinol with 1.2 equivalents of isonicotinic acid chloride in a yield of 30%.

As shown in Scheme 2, compound 14 was subjected to a Woodward-Prevost reaction [14], followed by the subsequent hydrolysis using K$_2$CO$_3$, to yield derivatives 15-16. Compound 15 was obtained due to the deprotection of the intramolecular hydroxyl groups in the presence of K$_2$CO$_3$. Further oxidative cleavage of the diol group of 16 with NaIO$_4$ gave aldehyde 17.
Scheme 1. Synthesis of the derivatives (3-14) of 1 and 2 through esterification.
Scheme 2. Synthesis of the diol and aldehyde derivatives of compound 2 through hydroxylation of the double bond. Reagents and reaction conditions: a. AgOAc, \(\text{I}_2, \frac{\text{V} \text{AcOH}}{\text{V} \text{H}_2\text{O}} = 20:1 \); b. \(\text{K}_2\text{CO}_3, \text{CH}_3\text{OH/H}_2\text{O} \); c. \(\text{NaIO}_4\cdot\text{SiO}_2, \text{CH}_2\text{Cl}_2 \)

Anti-TB Activity

The source plant extract was identified as an anti-TB lead through our screening effort, and compounds 1-2 were subsequently isolated through bioassay-directed separation by determining MICs against replicating and non-replicating \textit{M. tuberculosis} H37Rv using the MABA and LORA, respectively. Compound 1 showed MIC values of 34.4 \(\mu \text{M} \) against replicating cultures and 91.7 \(\mu \text{M} \) against non-replicating cultures, and 2 had MIC values of 79.2 \(\mu \text{M} \) against replicating cultures and 168.3 \(\mu \text{M} \) in against non-replicating cultures (Table 2).

In addition to the natural occurring resorcinols (1 and 2), we prepared 15 synthetic derivatives of these molecules for assessment of anti-TB potentials. The synthetic compounds were evaluated for their anti-TB activities against \textit{M. tuberculosis} H37Rv \textit{in vitro} (Table 2). While most of the derivatives displayed little or no inhibitory activity against the bacteria at the concentration of 100 \(\mu \text{g/mL} \), derivative 8 showed equivalent activity to that of compound 1 with the MIC values at 42.0 \(\mu \text{M} \) in MABA assay and 100.2 \(\mu \text{M} \) in LORA assay. Through analysis of the activity data of Table 2, distinct structure–activity relationships (SARs) have been observed for these resorcinol compounds. Based on the SAR analysis, we obtained some preliminary conclusion: 1) Although the esterification approach did not significantly boost the activity, the slight improvement of the anti-TB activity of 8 in comparison with its parent compound (2) indicated that the phenolic hydroxy groups may be used as the functional groups to synthesize other derivatives; 2) Presence of the double bond in the side chain is essential to retain the anti-TB activity for this type of compounds. This effect was observed when the double bond was hydrolyzed as in the cases of compounds 15-16; 3) the \(C_2 \) symmetrical structure may not be important for the anti-TB activity as evidenced by the cases of compounds 9 and 10.

Although the 15 resorcinol derivatives synthesized did not produce a significant improvement in the anti-TB activity of compounds 1 and 2, the activity profiles of compound 8 verified that the anti-TB activity was marginally enhanced by our present synthetic approach. Further, since 8 contains nitrogen, it can be made water soluble by
preparing it as a salt compound, which is worthy for further study as a novel anti-TB agent.

Table 2. Anti-TB activity of compounds 1-17.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Inhibition MABA at 100 µg/mL</th>
<th>Inhibition LORA at 100 µg/mL</th>
<th>MIC MABA µg/mL (µM)</th>
<th>MIC LORA µg/mL (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>--</td>
<td>--</td>
<td>11.9 (34.4)</td>
<td>31.7 (91.7)</td>
</tr>
<tr>
<td>2</td>
<td>--</td>
<td>--</td>
<td>25.2 (79.2)</td>
<td>53.5 (168.3)</td>
</tr>
<tr>
<td>3</td>
<td>0%</td>
<td>0%</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>4</td>
<td>4%</td>
<td>0%</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>5</td>
<td>0%</td>
<td>6%</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>6</td>
<td>15%</td>
<td>13%</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>7</td>
<td>88%</td>
<td>64%</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>8</td>
<td>--</td>
<td>--</td>
<td>22.2 (42.0)</td>
<td>52.9 (100.2)</td>
</tr>
<tr>
<td>9</td>
<td>87%</td>
<td>61%</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>10</td>
<td>--</td>
<td>--</td>
<td>42.3 (100.0)</td>
<td>91.4 (216.2)</td>
</tr>
<tr>
<td>11</td>
<td>0%</td>
<td>9%</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>12</td>
<td>10%</td>
<td>36%</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>13</td>
<td>16%</td>
<td>38%</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>14</td>
<td>26%</td>
<td>46%</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>15</td>
<td>89%</td>
<td>--</td>
<td>> 100</td>
<td>90.5 (178.9)</td>
</tr>
<tr>
<td>16</td>
<td>42%</td>
<td>49%</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>17</td>
<td>18%</td>
<td>11%</td>
<td>> 100</td>
<td>> 100</td>
</tr>
</tbody>
</table>

rifampin	(0.06)	(0.24)
isoniazid	(0.47)	(>256)
metronidazole	(>512)	(31.2)
capreomycin	(3.51)	(3.73)
streptomycin	(0.57)	(0.88)

*Minimum inhibitory concentration (MIC), determined under aerobic (MABA) or hypoxic (LORA) conditions against *M. tuberculosis* H$_{37}$Rv. Each value is the mean of at least three independent determinations.

There have been only two anti-TB drug introduced in the past 40 years and the rapid acquisition of drug resistance to the existing drugs necessitates development of new,
effective and affordable anti-TB drugs (4). Plant-derived anti-TB compounds provide a great potential for discovery of novel anti-TB agents due to their exceptionally wide diversified structure classes, including terpenoids, alkaloids, phenolic compounds and so on (18). Our bioassay-guided fractionation of the leaves and stems of the medicinal plant *A. gigantifolia* led to the isolation of two active resorcinols (1 and 2), which demonstrated inhibitory activity against *M. tuberculosis* (H$_{37}$Rv) *in vitro* with MIC values at 34.4 μM and 79.2 μM in MABA assay respectively, and 91.6 μM and 168.2 μM in LORA assay respectively. Hence medicinal plants remain an important resource to find new therapeutic agents.

Conclusions

In conclusion, anti-TB bioassay-guided fractionation of the CHCl$_3$ extract of the leaves and stems of *A. gigantifolia* led to the isolation of two 5-alkylresorcinols. Further, 15 synthetic derivatives were prepared from these two lead compounds. These compounds (natural and synthetic) were evaluated for their anti-TB activity against *M. tuberculosis* H$_{37}$Rv. The distinct structure–activity correlations were elucidated based on these derivatives. Derivative 8 showed equivalent activity to those of the compound 1, and it displayed improved anti-TB activity as compared with its parent compound (2). Since 8 is a nitrogen containing compound, it can be made as a water soluble salt, which is considered as valuable in drug development for the improvement of bioavailability. The compound should be regarded as a lead compound for synthesis of additional resorcinol derivatives in the search of novel anti-TB agents.

Acknowledgments

The work described in this paper was supported by grants from the Hong Kong Baptist University (HKBU) Interdisciplinary Research Matching Scheme (RC-IRMS/12-13/03), Natural Science Foundation of China (No. 21402166), and NIH Grants 3U01TW001015-10S1 and 2U01TW001015-11A1 (administered by the Fogarty International Center as part of an International Cooperative Biodiversity Groups program, through funds from the NIH, NSF, and Foreign Agricultural Service of the USDA).
Author Contributions

Dr. Yi-Fu Guan, Mr. Xun Song and Dr. Ming-Hua Qiu performed most of the chemistry related experiments including separation, structure determination, and chemical synthesis of the reported compounds with support of Dr. Hong-Jie Zhang. Dr. Harry H.S. Fong and Dr. Zhen-Dan He. Dr. Shi-Hong Luo did NMR measurement of the synthetic compounds with support of Dr. Sheng-Hong Li. Dr. Nguyen Van Hung performed the extraction of the plant sample. Dr. D. Doel Soejarto and Nguyen Man Cuong collected and authenticated the plant materials. Dr. Bao-Jie Wan performed most of the biology related experiments including anti-TB evaluation with support of Dr. Scott G. Franzblau. Dr. Hong-Jie Zhang, Dr. Harry H.S. Fong, Dr. D. Doel Soejarto and Dr. Scott G. Franzblau designed the bioassay-guided separation study. Dr. Hong-Jie Zhang designed the synthetic study. Dr. Yi-Fu Guan, Mr. Xun Song, Dr. Zheng-Dan He and Dr. Hong-Jie Zhang co-wrote the manuscript with the assistance of Dr. Harry H.S. Fong, Dr. Scott Franzblau and Dr. D. Doel Soejarto. All authors discussed the results and commented on the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.
References

Supporting Information

Supplementary materials can be found at http://

Figure S1. 1H NMR (400 MHz, CDCl3) spectrum of compound 3
Figure S2. 13C NMR (100 MHz, CDCl3) spectrum of compound 3
Figure S3. 1H NMR (400 MHz, CDCl3) spectrum of compound 4
Figure S4. 13C NMR (100 MHz, CDCl3) spectrum of compound 4
Figure S5. 1H NMR (400 MHz, CDCl3) spectrum of compound 5
Figure S6. 13C NMR (100 MHz, CDCl3) spectrum of compound 5
Figure S7. 1H NMR (400 MHz, CDCl3) spectrum of compound 6
Figure S8. 13C NMR (100 MHz, CDCl3) spectrum of compound 6
Figure S9. 1H NMR (400 MHz, CDCl3) spectrum of compound 7
Figure S10. 13C NMR (100 MHz, CDCl3) spectrum of compound 7
Figure S11. 1H NMR (400 MHz, CDCl3) spectrum of compound 8
Figure S12. 13C NMR (100 MHz, CDCl3) spectrum of compound 8
Figure S13. 1H NMR (400 MHz, CDCl3) spectrum of compound 9
Figure S14. 13C NMR (100 MHz, CDCl3) spectrum of compound 9
Figure S15. 1H NMR (400 MHz, CDCl3) spectrum of compound 10
Figure S16. 1H NMR (400 MHz, CDCl3) spectrum of compound 11
Figure S17. 13C NMR (100 MHz, CDCl3) spectrum of compound 11
Figure S18. 1H NMR (400 MHz, CDCl3) spectrum of compound 12
Figure S19. 1H NMR (400 MHz, CDCl3) spectrum of compound 13
Figure S20. 13C NMR (100 MHz, CDCl3) spectrum of compound 13
Figure S21. 1H NMR (400 MHz, CDCl3) spectrum of compound 14
Figure S22. 1H NMR (400 MHz, CDCl3) spectrum of compound 15
Figure S23. 1H NMR (400 MHz, CDCl3) spectrum of compound 16
Figure S24. 1H NMR (400 MHz, CDCl3) spectrum of compound 17
Figure S25. 13C NMR (100 MHz, CDCl3) spectrum of compound 17
Figure S26. HRTOFMS spectrum of compound 1
Figure S27. HRTOFMS spectrum of compound 2
Figure S28. HRTOFMS spectrum of compound 3
Figure S29. HRTOFMS spectrum of compound 4
Figure S30. HRTOFMS spectrum of compound 5
Figure S31. HRTOFMS spectrum of compound 6
Figure S32. HRTOFMS spectrum of compound 7
Figure S33. HRTOFMS spectrum of compound 8
Figure S34. HRTOFMS spectrum of compound 9
Figure S35. HRTOFMS spectrum of compound 10
Figure S36. HRTOFMS spectrum of compound 11
Figure S37. HRTOFMS spectrum of compound 12
Figure S38. HRTOFMS spectrum of compound 13
Figure S39. HRTOFMS spectrum of compound 15
Figure S40. HRTOFMS spectrum of compound 16