Year of Award


Degree Type


Degree Name

Master of Philosophy (MPhil)


Department of Chemistry.

Principal Supervisor

Leung, Louis Man Lay


Electric properties, Indigo, Organic semiconductors, Synthesis.




Two new series of organic soluble indigoids 7-7-dialkoxyindigoids (4a, 4b) and 4,4-dibromo-7,7-dialkoxyindigoids (5a, 5b) (alkoxy = n-butoxy and n-octyloxy) have been synthesized starting from the inexpensive 3-hydroxybenzaldehyde for OFET applications. The indigoids were soluble in common organic solvents such as chloroform, dichloromethane, toluene, ethyl acetate and ethers. The enhanced solubility was suggested to be a lack of intermolecular hydrogen-bonds as confirmed by single crystal X-ray diffraction analyses. It was found that intramolecular hydrogen-bonds in indigoids were crucial to the exhibition of field-effect in OFETs, while intermolecular hydrogen-bonds only caused insolubility of the indigoids. Compared to the pristine insoluble indigo (LUMO = -3.55 eV and Eg = 1.91 eV), the soluble indigoids containing electron donating alkoxy side chains at the indigoid 7 and 7 positions were shown to have LUMO decreased by -0.13 to -0.26 eV as well as a lower bandgap energy from Eg = 1.66 to 1.94 eV. A bottom-gate-top-contact OFET employing polystyrene as the dielectric layer was used to demonstrate the field-effect properties. The indigoid 4,4-dibromo-7,7-dioctyloxyindigoid (5b) was found to exhibit the highest electron mobility at 2.20 ₉ 10-5 cm2V-1s-1. In addition, 4,4-dibromo-7,7-dioctyloxyindigoids (5) can be further derivatized by organometallic catalyzed aryl-aryl coupling reactions to create functional organic electronic materials.


Principal supervisor: Doctor Leung Louis M L.;Thesis submitted to the Department of Chemistry. ; Thesis (M.Phil.)--Hong Kong Baptist University, 2016. ;


Includes bibliographical references (pages 137-142)


The author retains all rights to this work. The author has signed an agreement granting HKBU a non-exclusive license to archive and distribute their thesis.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.