Document Type
Journal Article
Department/Unit
Department of Mathematics
Title
Weighted toeplitz regularized least squares computation for image restoration
Language
English
Abstract
The main aim of this paper is to develop a fast algorithm for solving weighted Toeplitz regularized least squares problems arising from image restoration. Based on augmented system formulation, we develop new Hermitian and skew-Hermitian splitting (HSS) preconditioners for solving such linear systems. The advantage of the proposed preconditioner is that the blurring matrix, weighting matrix, and regularization matrix can be decoupled such that the resulting preconditioner is not expensive to use. We show that for a preconditioned system that is derived from a saddle point structure of size (m+n)×(m+n), the preconditioned matrix has an eigenvalue at 1 with multiplicity n and the other m eigenvalues of the form 1 λ with |λ| > 1. We also study how to choose the HSS parameter to minimize the magnitude of λ, and therefore the Krylov subspace method applied to solving the preconditioned system converges very quickly. Experimental results for image restoration problems are reported to demonstrate that the performance of the proposed preconditioner is better than the other testing preconditioners. © 2014 Society for Industrial and Applied Mathematics.
Keywords
Colored noise, Image restoration, Least squares problems, Preconditioners, Splitting, Weighted Toeplitz matrices
Publication Date
2014
Source Publication Title
SIAM Journal on Scientific Computing
Volume
36
Issue
1
Start Page
B94
End Page
B121
Publisher
Society for Industrial and Applied Mathematics
DOI
10.1137/120888776
Link to Publisher's Edition
http://dx.doi.org/10.1137/120888776
ISSN (print)
10648275
ISSN (electronic)
10957197
APA Citation
Ng, M., & Pan, J. (2014). Weighted toeplitz regularized least squares computation for image restoration. SIAM Journal on Scientific Computing, 36 (1), B94-B121. https://doi.org/10.1137/120888776