Document Type
Journal Article
Department/Unit
Department of Mathematics
Title
Kernel-based generalized cross-validation in non-parametric mixed-effect models
Language
English
Abstract
Although generalized cross-validation (GCV) has been frequently applied to select bandwidth when kernel methods are used to estimate non-parametric mixed-effect models in which non-parametric mean functions are used to model covariate effects, and additive random effects are applied to account for overdispersion and correlation, the optimality of the GCV has not yet been explored. In this article, we construct a kernel estimator of the non-parametric mean function. An equivalence between the kernel estimator and a weighted least square type estimator is provided, and the optimality of the GCV-based bandwidth is investigated. The theoretical derivations also show that kernel-based and spline-based GCV give very similar asymptotic results. This provides us with a solid base to use kernel estimation for mixed-effect models. Simulation studies are undertaken to investigate the empirical performance of the GCV. A real data example is analysed for illustration. © 2009 Board of the Foundation of the Scandinavian Journal of Statistics.
Keywords
Bandwidth selection, Generalized cross-validation, Kernel smoothing, Non-parametric mixed-effect models
Publication Date
2009
Source Publication Title
Scandinavian Journal of Statistics
Volume
36
Issue
2
Start Page
229
End Page
247
Publisher
Wiley
DOI
10.1111/j.1467-9469.2008.00625.x
Link to Publisher's Edition
http://dx.doi.org/10.1111/j.1467-9469.2008.00625.x
ISSN (print)
03036898
ISSN (electronic)
14679469
APA Citation
Xu, W., & Zhu, L. (2009). Kernel-based generalized cross-validation in non-parametric mixed-effect models. Scandinavian Journal of Statistics, 36 (2), 229-247. https://doi.org/10.1111/j.1467-9469.2008.00625.x