Document Type

Journal Article

Department/Unit

Department of Physics

Language

English

Abstract

All-solution-processed flexible organic solar cells (FOSCs) with high power conversion efficiency (PCE) are the prerequisite for application in low-cost, large-area, flexible, photovoltaic devices. In this work, high-performance, top-illuminated FOSCs using ultrathin Ag-modified graphite-coated poly(ethylene terephthalate) (PET) substrates are demonstrated. The ultrathin Agmodified graphite/PET substrates have excellent electric conductivity, mechanical flexibility, and easy processability for FOSCs. A PCE of 5.31% for FOSCs, based on the blend system poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl) benzo [1,2-b:4,5-b′]dith-iophene-co-3-fluorothieno[3,4- b]thiophene-2-carboxylate]: [6,6]-phenyl-C7l-but-yric acid methyl ester, having a bilayer of MoOx/Ag upper transparent anode is demonstrated. Top-illuminated FOSCs with a transparent upper electrode of solution processed Ag nanowires also yielded a PCE of 3.76%. All solution- processed FOSCs exhibit excellent mechanical flexibility and retain >81% of the initial efficiency after 500 cycles of bending test. Furthermore, graphite-based electrodes demonstrate good heat-insulation properties. The outcomes of this work offer an alternative to fabricate high-performance, all-solution-processable, top-illuminated FOSCs, providing a commercially viable approach for application in large-area solar cells that can be prepared by printing and roll-to-roll fabrication processes.

Keywords

Ag-modified graphite, flexible organic solar cells, top-illuminated, all-solution-processed

Publication Date

1-2019

Source Publication Title

Nanophotonics

Publisher

De Gruyter

Creative Commons License

Creative Commons Attribution-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-No Derivative Works 4.0 License.

DOI

10.1515/nanoph-2018-0189

Link to Publisher's Edition

https://doi.org/10.1515/nanoph-2018-0189

ISSN (print)

21928614

ISSN (electronic)

21928614

Included in

Physics Commons

Share

COinS